No Arabic abstract
We propose the use of isotopically highly enriched detectors for the precise study of coherent-elastic neutrino-nucleus scattering (CEvNS). CEvNS has been measured for the first time in CsI and recently confirmed with a liquid argon detector. It is expected that several new experimental setups will measure this process with increasing accuracy. Taking Ge detectors as a working example, we demonstrate that a combination of different isotopes is an excellent option to probe, for instance, the dominant quadratic dependence on the number of neutrons, $N$, that is predicted by the theoretical models. This is only an example, but the scheme has much more general applicability. Experiments based on the new approach can make a simultaneous differential CEvNS measurements with detectors of different isotopic composition. Particular combination of observables could be used to cancel systematic errors.
Understanding the properties of the continuum radiation and broad emission lines of active galactic nuclei provide significant information not only to model the radiation mechanism and constrain the geometry and kinematics of the broad-line region (BLR) but also to probe the central engine of the sources. Here we investigate the multifractal behaviour of the H$beta$ emission line and the 5100 {AA} continuum flux light curves of NGC 5548. The aim is to search for multi-scaling signatures in the light curves and check if there is a possible nonlinear relationship between them. To this end, we use a multifractality analysis technique called Multifractal Detrended Moving Average (MFDMA) analysis. We detect multifractal (nonlinear) signatures in the full monitoring and densely sampled period of the H$beta$ line and 5100 {AA} continuum light curves of NGC 5548, possibly indicating the presence of complex and nonlinear interaction in the 5100 {AA} continuum and H$beta$ emission line regions. Moreover, the degree of multifractality of H$beta$ line is found to be about twice that of the 5100 {AA} continuum. The nonlinearity of both emissions could be generated when the broad-line region reprocesses the radiation from the central compact source. Finally, we found that anti-persistent long-range temporal correlation is the main source of the multifractality detected in both light curves.
A framework to represent and compute two-loop $N$-point Feynman diagrams as double-integrals is discussed. The integrands are generalised one-loop type multi-point functions multiplied by simple weighting factors. The final integrations over these two variables are to be performed numerically, whereas the ingredients involved in the integrands, in particular the generalised one-loop type functions, are computed analytically. The idea is illustrated on a few examples of scalar three- and four-point functions.
We discuss a novel pertubative QCD approach on the exclusive non-leptonic two body B-meson decays. We briefly review its ingredients and some important theoretical issues on the factorization approaches. We show numerical results which is compatible with recent experimantal data for the charmless B-meson decays.
In the current world of economic crises, the cost control is one of the chief concerns for all types of industries, especially for the small venders. The small vendors are suppose to minimize their budget on Information Technology by reducing the initial investment in hardware and costly database servers like ORACLE, SQL Server, SYBASE, etc. for the purpose of data processing and storing. In other divisions, the electronic devices manufacturing companies want to increase the demand and reduce the manufacturing cost by introducing the low cost technologies. The new small devices like ipods, iphones, palm top etc. are now-a-days used as data computation and storing tools. For both the cases mentioned above, instead of going for the costly database servers which additionally requires extra hardware as well as the extra expenses in training and handling, the flat file may be considered as a candidate due to its easy handling nature, fast accessing, and of course free of cost. But the main hurdle is the security aspects which are not up to the optimum level. In this paper, we propose a methodology that combines all the merit of the flat file and with the help of a novel steganographic technique we can maintain the utmost security fence. The new proposed methodology will undoubtedly be highly beneficial for small vendors as well as for the above said electronic devices manufacturer
We address the geometrical structure of the skewed correlator of two space-like separated (almost) oppositely directed Wilson lines. Similar objects occur in the analysis of the transverse-momentum broadening probability function, the first moment of which is associated with the jet quenching parameter. We start from the Euclidean space formulation and then transform the result to the Minkowski light-cone geometry, arguing that this procedure is consistent in the leading order of the perturbative expansion. We discuss as well the issues of the UV, rapidity and IR singularities, and possible use of the proposed approach in lattice simulations.