Do you want to publish a course? Click here

Framework for a novel mixed analytical/numerical approach for the computation of two-loop $N$-point Feynman diagrams

120   0   0.0 ( 0 )
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

A framework to represent and compute two-loop $N$-point Feynman diagrams as double-integrals is discussed. The integrands are generalised one-loop type multi-point functions multiplied by simple weighting factors. The final integrations over these two variables are to be performed numerically, whereas the ingredients involved in the integrands, in particular the generalised one-loop type functions, are computed analytically. The idea is illustrated on a few examples of scalar three- and four-point functions.



rate research

Read More

209 - Wei Gong , Zoltan Nagy , 2008
One approach to the calculation of cross sections for infrared-safe observables in high energy collisions at next-to-leading order is to perform all of the integrations, including the virtual loop integration, by Monte Carlo numerical integration. In a previous paper, two of us have shown how one can perform such a virtual loop integration numerically after first introducing a Feynman parameter representation. In this paper, we perform the integration directly, without introducing Feynman parameters, after suitably deforming the integration contour. Our example is the N-photon scattering amplitude with a massless electron loop. We report results for N = 6 and N = 8.
A new approach is presented to evaluate multi-loop integrals, which appear in the calculation of cross-sections in high-energy physics. It relies on a fully numerical method and is applicable to a wide class of integrals with various mass configurations. As an example, the computation of two-loop planar and non-planar box diagrams is shown. The results are confirmed by comparisons with other techniques, including the reduction method, and by a consistency check using the dispersion relation.
191 - F.Yuasa , T.Ishikawa , Y.Kurihara 2011
In this paper, we describe a numerical approach to evaluate Feynman loop integrals. In this approach the key technique is a combination of a numerical integration method and a numerical extrapolation method. Since the computation is carried out in a fully numerical way, our approach is applicable to one-, two- and multi-loop diagrams. Without any analytic treatment it can compute diagrams with not only real masses but also complex masses for the internal particles. As concrete examples we present numerical results of a scalar one-loop box integral with complex masses and two-loop planar and non-planar box integrals with masses. We discuss the quality of our numerical computation by comparisons with other methods and also propose a self consistency check.
We present the first public version of Caravel, a C++17 framework for the computation of multi-loop scattering amplitudes in quantum field theory, based on the numerical unitarity method. Caravel is composed of modules for the $D$-dimensional decomposition of integrands of scattering amplitudes into master and surface terms, the computation of tree-level amplitudes in floating point or finite-field arithmetic, the numerical computation of one- and two-loop amplitudes in QCD and Einstein gravity, and functional reconstruction tools. We provide programs that showcase Caravels main functionalities and allow to compute selected one- and two-loop amplitudes.
Co-operation of the Feynman DIagram ANAlyzer (DIANA) with the underlying operational system (UNIX) is presented. We discuss operators to run external commands and a recent development of parallel processing facilities and an extension in the spirit of a component model.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا