We develop an operator splitting approach to solve diffeomorphic matching problems for sequences of surfaces in three-dimensional space. The goal is to smoothly match, at a very fast rate, finite sequences of observed 3D-snapshots extracted from movies recording the smooth dynamic deformations of soft surfaces. We have implemented our algorithms in a proprietary software installed at The Methodist Hospital (Cardiology) to monitor mitral valve strain through computer analysis of noninvasive patients echocardiographies.
We address the following problem: given two smooth densities on a manifold, find an optimal diffeomorphism that transforms one density into the other. Our framework builds on connections between the Fisher-Rao information metric on the space of probability densities and right-invariant metrics on the infinite-dimensional manifold of diffeomorphisms. This optimal information transport, and modifications thereof, allows us to construct numerical algorithms for density matching. The algorithms are inherently more efficient than those based on optimal mass transport or diffeomorphic registration. Our methods have applications in medical image registration, texture mapping, image morphing, non-uniform random sampling, and mesh adaptivity. Some of these applications are illustrated in examples.
We propose a variational model with diffeomorphic optimal transportation for joint image reconstruction and motion estimation. The proposed model is a production of assembling the Wasserstein distance with the Benamou--Brenier formula in optimal transportation and the flow of diffeomorphisms involved in large deformation diffeomorphic metric mapping, which is suitable for the scenario of spatiotemporal imaging with large diffeomorphic and mass-preserving deformations. Specifically, we first use the Benamou--Brenier formula to characterize the optimal transport cost among the flow of mass-preserving images, and restrict the velocity field into the admissible Hilbert space to guarantee the generated deformation flow being diffeomorphic. We then gain the ODE-constrained equivalent formulation for Benamou--Brenier formula. We finally obtain the proposed model with ODE constraint following the framework that presented in our previous work. We further get the equivalent PDE-constrained optimal control formulation. The proposed model is compared against several existing alternatives theoretically. The alternating minimization algorithm is presented for solving the time-discretized version of the proposed model with ODE constraint. Several important issues on the proposed model and associated algorithms are also discussed. Particularly, we present several potential models based on the proposed diffeomorphic optimal transportation. Under appropriate conditions, the proposed algorithm also provides a new scheme to solve the models using quadratic Wasserstein distance. The performance is finally evaluated by several numerical experiments in space-time tomography, where the data is measured from the concerned sequential images with sparse views and/or various noise levels.
Monotone operator splitting is a powerful paradigm that facilitates parallel processing for optimization problems where the cost function can be split into two convex functions. We propose a generalized form of monotone operator splitting based on Bregman divergence. We show that an appropriate design of the Bregman divergence leads to faster convergence than conventional splitting algorithms. The proposed Bregman monotone operator splitting (B-MOS) is applied to an application to illustrate its effectiveness. B-MOS was found to significantly improve the convergence rate.
In this book chapter we study the Riemannian Geometry of the density registration problem: Given two densities (not necessarily probability densities) defined on a smooth finite dimensional manifold find a diffeomorphism which transforms one to the other. This problem is motivated by the medical imaging application of tracking organ motion due to respiration in Thoracic CT imaging where the fundamental physical property of conservation of mass naturally leads to modeling CT attenuation as a density. We will study the intimate link between the Riemannian metrics on the space of diffeomorphisms and those on the space of densities. We finally develop novel computationally efficient algorithms and demonstrate there applicability for registering RCCT thoracic imaging.
In this paper, we consider a generalized forward-backward splitting (G-FBS) operator for solving the monotone inclusions, and analyze its nonexpansive properties in a context of arbitrary variable metric. Then, for the associated fixed-point iterations (i.e. the G-FBS algorithms), the global ergodic and pointwise convergence rates of metric distance are obtained from the nonexpansiveness. The convergence in terms of objective function value is also investigated, when the G-FBS operator is applied to a minimization problem. A main contribution of this paper is to show that the G-FBS operator provides a simplifying and unifying framework to model and analyze a great variety of operator splitting algorithms, where the convergence behaviours can be easily described by the fixed-point construction of this simple operator.