No Arabic abstract
Following decades of sustained improvement, metaheuristics are one of the great success stories of optimization research. However, in order for research in metaheuristics to avoid fragmentation and a lack of reproducibility, there is a pressing need for stronger scientific and computational infrastructure to support the development, analysis and comparison of new approaches. We argue that, via principled choice of infrastructure support, the field can pursue a higher level of scientific enquiry. We describe our vision and report on progress, showing how the adoption of common protocols for all metaheuristics can help liberate the potential of the field, easing the exploration of the design space of metaheuristics.
Multi-objectivization is a term used to describe strategies developed for optimizing single-objective problems by multi-objective algorithms. This paper focuses on multi-objectivizing the sum-of-the-parts combinatorial optimization problems, which include the traveling salesman problem, the unconstrained binary quadratic programming and other well-known combinatorial optimization problem. For a sum-of-the-parts combinatorial optimization problem, we propose to decompose its original objective into two sub-objectives with controllable correlation. Based on the decomposition method, two new multi-objectivization inspired single-objective optimization techniques called non-dominance search and non-dominance exploitation are developed, respectively. Non-dominance search is combined with two metaheuristics, namely iterated local search and iterated tabu search, while non-dominance exploitation is embedded within the iterated Lin-Kernighan metaheuristic. The resultant metaheuristics are called ILS+NDS, ITS+NDS and ILK+NDE, respectively. Empirical studies on some TSP and UBQP instances show that with appropriate correlation between the sub-objectives, there are more chances to escape from local optima when new starting solution is selected from the non-dominated solutions defined by the decomposed sub-objectives. Experimental results also show that ILS+NDS, ITS+NDS and ILK+NDE all significantly outperform their counterparts on most of the test instances.
In the past three decades, a large number of metaheuristics have been proposed and shown high performance in solving complex optimization problems. While most variation operators in existing metaheuristics are empirically designed, this paper aims to design new operators automatically, which are expected to be search space independent and thus exhibit robust performance on different problems. For this purpose, this work first investigates the influence of translation invariance, scale invariance, and rotation invariance on the search behavior and performance of some representative operators. Then, we deduce the generic form of translation, scale, and rotation invariant operators. Afterwards, a principled approach is proposed for the automated design of operators, which searches for high-performance operators based on the deduced generic form. The experimental results demonstrate that the operators generated by the proposed approach outperform state-of-the-art ones on a variety of problems with complex landscapes and up to 1000 decision variables.
The success of metaheuristic optimization methods has led to the development of a large variety of algorithm paradigms. However, no algorithm clearly dominates all its competitors on all problems. Instead, the underlying variety of landscapes of optimization problems calls for a variety of algorithms to solve them efficiently. It is thus of prior importance to have access to mature and flexible software frameworks which allow for an efficient exploration of the algorithm design space. Such frameworks should be flexible enough to accommodate any kind of metaheuristics, and open enough to connect with higher-level optimization, monitoring and evaluation softwares. This article summarizes the features of the ParadisEO framework, a comprehensive C++ free software which targets the development of modular metaheuristics. ParadisEO provides a highly modular architecture, a large set of components, speed of execution and automated algorithm design features, which are key to modern approaches to metaheuristics development.
The main feature of large-scale multi-objective optimization problems (LSMOP) is to optimize multiple conflicting objectives while considering thousands of decision variables at the same time. An efficient LSMOP algorithm should have the ability to escape the local optimal solution from the huge search space and find the global optimal. Most of the current researches focus on how to deal with decision variables. However, due to the large number of decision variables, it is easy to lead to high computational cost. Maintaining the diversity of the population is one of the effective ways to improve search efficiency. In this paper, we propose a probabilistic prediction model based on trend prediction model and generating-filtering strategy, called LT-PPM, to tackle the LSMOP. The proposed method enhances the diversity of the population through importance sampling. At the same time, due to the adoption of an individual-based evolution mechanism, the computational cost of the proposed method is independent of the number of decision variables, thus avoiding the problem of exponential growth of the search space. We compared the proposed algorithm with several state-of-the-art algorithms for different benchmark functions. The experimental results and complexity analysis have demonstrated that the proposed algorithm has significant improvement in terms of its performance and computational efficiency in large-scale multi-objective optimization.
This paper presents a novel neural network design that learns the heuristic for Large Neighborhood Search (LNS). LNS consists of a destroy operator and a repair operator that specify a way to carry out the neighborhood search to solve the Combinatorial Optimization problems. The proposed approach in this paper applies a Hierarchical Recurrent Graph Convolutional Network (HRGCN) as a LNS heuristic, namely Dynamic Partial Removal, with the advantage of adaptive destruction and the potential to search across a large scale, as well as the context-awareness in both spatial and temporal perspective. This model is generalized as an efficient heuristic approach to different combinatorial optimization problems, especially to the problems with relatively tight constraints. We apply this model to vehicle routing problem (VRP) in this paper as an example. The experimental results show that this approach outperforms the traditional LNS heuristics on the same problem as well. The source code is available at href{https://github.com/water-mirror/DPR}{https://github.com/water-mirror/DPR}.