Do you want to publish a course? Click here

Multi-objectivization Inspired Metaheuristics for the Sum-of-the-Parts Combinatorial Optimization Problems

55   0   0.0 ( 0 )
 Added by Jialong Shi
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Multi-objectivization is a term used to describe strategies developed for optimizing single-objective problems by multi-objective algorithms. This paper focuses on multi-objectivizing the sum-of-the-parts combinatorial optimization problems, which include the traveling salesman problem, the unconstrained binary quadratic programming and other well-known combinatorial optimization problem. For a sum-of-the-parts combinatorial optimization problem, we propose to decompose its original objective into two sub-objectives with controllable correlation. Based on the decomposition method, two new multi-objectivization inspired single-objective optimization techniques called non-dominance search and non-dominance exploitation are developed, respectively. Non-dominance search is combined with two metaheuristics, namely iterated local search and iterated tabu search, while non-dominance exploitation is embedded within the iterated Lin-Kernighan metaheuristic. The resultant metaheuristics are called ILS+NDS, ITS+NDS and ILK+NDE, respectively. Empirical studies on some TSP and UBQP instances show that with appropriate correlation between the sub-objectives, there are more chances to escape from local optima when new starting solution is selected from the non-dominated solutions defined by the decomposed sub-objectives. Experimental results also show that ILS+NDS, ITS+NDS and ILK+NDE all significantly outperform their counterparts on most of the test instances.



rate research

Read More

Following decades of sustained improvement, metaheuristics are one of the great success stories of optimization research. However, in order for research in metaheuristics to avoid fragmentation and a lack of reproducibility, there is a pressing need for stronger scientific and computational infrastructure to support the development, analysis and comparison of new approaches. We argue that, via principled choice of infrastructure support, the field can pursue a higher level of scientific enquiry. We describe our vision and report on progress, showing how the adoption of common protocols for all metaheuristics can help liberate the potential of the field, easing the exploration of the design space of metaheuristics.
The prospect of using quantum computers to solve combinatorial optimization problems via the quantum approximate optimization algorithm (QAOA) has attracted considerable interest in recent years. However, a key limitation associated with QAOA is the need to classically optimize over a set of quantum circuit parameters. This classical optimization can have significant associated costs and challenges. Here, we provide an expanded description of Lyapunov control-inspired strategies for quantum optimization, as first presented in arXiv:2103.08619, that do not require any classical optimization effort. Instead, these strategies utilize feedback from qubit measurements to assign values to the quantum circuit parameters in a deterministic manner, such that the combinatorial optimization problem solution improves monotonically with the quantum circuit depth. Numerical analyses are presented that investigate the utility of these strategies towards MaxCut on weighted and unweighted 3-regular graphs, both in ideal implementations and also in the presence of measurement noise. We also discuss how how these strategies may be used to seed QAOA optimizations in order to improve performance for near-term applications, and explore connections to quantum annealing.
70 - Jian Yang , Yuhui Shi 2021
Population-based methods are often used to solve multimodal optimization problems. By combining niching or clustering strategy, the state-of-the-art approaches generally divide the population into several subpopulations to find multiple solutions for a problem at hand. However, these methods only guided by the fitness value during iterations, which are suffering from determining the number of subpopulations, i.e., the number of niche areas or clusters. To compensate for this drawback, this paper presents an Attention-oriented Brain Storm Optimization (ABSO) method that introduces the attention mechanism into a relatively new swarm intelligence algorithm, i.e., Brain Storm Optimization (BSO). By converting the objective space from the fitness space into attention space, the individuals are clustered and updated iteratively according to their salient values. Rather than converge to a single global optimum, the proposed method can guide the search procedure to converge to multiple salient solutions. The preliminary results show that the proposed method can locate multiple global and local optimal solutions of several multimodal benchmark functions. The proposed method needs less prior knowledge of the problem and can automatically converge to multiple optimums guided by the attention mechanism, which has excellent potential for further development.
Quantum hardware and quantum-inspired algorithms are becoming increasingly popular for combinatorial optimization. However, these algorithms may require careful hyperparameter tuning for each problem instance. We use a reinforcement learning agent in conjunction with a quantum-inspired algorithm to solve the Ising energy minimization problem, which is equivalent to the Maximum Cut problem. The agent controls the algorithm by tuning one of its parameters with the goal of improving recently seen solutions. We propose a new Rescaled Ranked Reward (R3) method that enables stable single-player version of self-play training that helps the agent to escape local optima. The training on any problem instance can be accelerated by applying transfer learning from an agent trained on randomly generated problems. Our approach allows sampling high-quality solutions to the Ising problem with high probability and outperforms both baseline heuristics and a black-box hyperparameter optimization approach.
107 - Weizhen Hu , Min Jiang , Xing Gao 2019
The main feature of the Dynamic Multi-objective Optimization Problems (DMOPs) is that optimization objective functions will change with times or environments. One of the promising approaches for solving the DMOPs is reusing the obtained Pareto optimal set (POS) to train prediction models via machine learning approaches. In this paper, we train an Incremental Support Vector Machine (ISVM) classifier with the past POS, and then the solutions of the DMOP we want to solve at the next moment are filtered through the trained ISVM classifier. A high-quality initial population will be generated by the ISVM classifier, and a variety of different types of population-based dynamic multi-objective optimization algorithms can benefit from the population. To verify this idea, we incorporate the proposed approach into three evolutionary algorithms, the multi-objective particle swarm optimization(MOPSO), Nondominated Sorting Genetic Algorithm II (NSGA-II), and the Regularity Model-based multi-objective estimation of distribution algorithm(RE-MEDA). We employ experiments to test these algorithms, and experimental results show the effectiveness.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا