Do you want to publish a course? Click here

Coronal heating and solar wind formation in quiet Sun and coronal holes: a unified scenario

104   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Coronal holes (CHs) are darker than quiet Sun (QS) when observed in coronal channels. This study aims to understand the similarities and differences between CHs and QS in the transition region using the ion{Si}{4}~1394~{AA} line recorded by the Interface Region Imaging Spectrograph (IRIS) by considering the distribution of magnetic field measured by the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). We find that ion{Si}{4} intensities obtained in CHs are lower than those obtained in QS for regions with identical magnetic flux densities. Moreover, the difference in intensities between CHs and QS increases with increasing magnetic flux. For the regions with equal magnetic flux density, QS line profiles are more redshifted than those measured in CHs. Moreover, the blue shifts measured in CHs show an increase with increasing magnetic flux density unlike in the QS. The non-thermal velocities in QS, as well as in CHs, show an increase with increasing magnetic flux. However, no significant difference was observed in QS and CHs, albeit a small deviation at small flux densities. Using these results, we propose a unified model for the heating of the corona in the QS and in CHs and the formation of the solar wind.



rate research

Read More

Coronal plumes are bright magnetic funnels found in quiet regions (QRs) and coronal holes (CHs). They extend high into the solar corona and last from hours to days. The heating processes of plumes involve dynamics of the magnetic field at their base, but the processes themselves remain mysterious. Recent observations suggest that plume heating is a consequence of magnetic flux cancellation and/or convergence at the plume base. These studies suggest that the base flux in plumes is of mixed polarity, either obvious or hidden in SDO HMI data, but do not quantify it. To investigate the magnetic origins of plume heating, we select ten unipolar network flux concentrations, four in CHs, four in QRs, and two that do not form a plume, and track plume luminosity in SDO AIA 171 A images along with the base flux in SDO HMI magnetograms, over each flux concentrations lifetime. We find that plume heating is triggered when convergence of the base flux surpasses a field strength of 200 to 600 G. The luminosity of both QR and CH plumes respond similarly to the field in the plume base, suggesting that the two have a common formation mechanism. Our examples of non-plume-forming flux concentrations, reaching field strengths of 200 G for a similar number of pixels as for a couple of our plumes, suggest that a critical field might be necessary to form a plume but is not sufficient for it, thus, advocating for other mechanisms, e.g. flux cancellation due to hidden opposite-polarity field, at play.
Rapid Blue- and Red-shifted Excursions (RBEs and RREs) are likely to be the on-disk counterparts of Type II spicules. Recently, heating signatures from RBEs/RREs have been detected in IRIS slit-jaw images dominated by transition-region lines around network patches. Additionally, signatures of Type II spicules have been observed in AIA diagnostics. The full-disk, ever-present nature of the AIA diagnostics should provide us with sufficient statistics to directly determine how important RBEs and RREs are to the heating of the transition region and corona. We find, with high statistical significance, that at least 11% of the low-coronal brightenings detected in a quiet-Sun region in 304, can be attributed to either RBEs or RREs as observed in Halpha, and a 6% match of 171 detected events to RBEs or RREs with very similar statistics for both types of Halpha features. We took a statistical approach that allows for noisy detections in the coronal channels and provides us with a lower, but statistical significant, bound. Further, we consider matches based on overlapping features in both time and space, and find strong visual indications of further correspondence between coronal events and co-evolving but non-overlapping, RBEs and RREs.
This paper reviews our growing understanding of the physics behind coronal heating (in open-field regions) and the acceleration of the solar wind. Many new insights have come from the last solar cycles worth of observations and theoretical work. Measurements of the plasma properties in the extended corona, where the primary solar wind acceleration occurs, have been key to discriminating between competing theories. We describe how UVCS/SOHO measurements of coronal holes and streamers over the last 14 years have provided clues about the detailed kinetic processes that energize both fast and slow wind regions. We also present a brief survey of current ideas involving the coronal source regions of fast and slow wind streams, and how these change over the solar cycle. These source regions are discussed in the context of recent theoretical models (based on Alfven waves and MHD turbulence) that have begun to successfully predict both the heating and acceleration in fast and slow wind regions with essentially no free parameters. Some new results regarding these models - including a quantitative prediction of the lower density and temperature at 1 AU seen during the present solar minimum in comparison to the prior minimum - are also shown.
Recent IRIS observations have revealed a prevalence of intermittent small-scale jets with apparent speeds of 80 - 250 km s$^{-1}$, emanating from small-scale bright regions inside network boundaries of coronal holes. We find that these network jets appear not only in coronal holes but also in quiet-sun regions. Using IRIS 1330A (C II) slit-jaw images, we extract several parameters of these network jets, e.g. apparent speed, length, lifetime and increase in foot-point brightness. Using several observations, we find that some properties of the jets are very similar but others are obviously different between the quiet sun and coronal holes. For example, our study shows that the coronal-hole jets appear to be faster and longer than those in the quiet sun. This can be directly attributed to a difference in the magnetic configuration of the two regions with open magnetic field lines rooted in coronal holes and magnetic loops often present in quiet sun. We have also detected compact bright loops, likely transition region loops, mostly in quiet sun. These small loop-like regions are generally devoid of network jets. In spite of different magnetic structures in the coronal hole and quiet sun in the transition region, there appears to be no substantial difference for the increase in foot-point brightness of the jets, which suggests that the generation mechanism of these network jets is likely the same in both regions.
As the solar wind propagates through the heliosphere, dynamical processes irreversibly erase the signatures of the near-Sun heating and acceleration processes. The elemental fractionation of the solar wind should not change during transit however, making it an ideal tracer of these processes. We aimed to verify directly if the solar wind elemental fractionation is reflective of the coronal source region fractionation, both within and across different solar wind source regions. A backmapping scheme was used to predict where solar wind measured by the Advanced Composition Explorer (ACE) originated in the corona. The coronal composition measured by the Hinode Extreme ultraviolet Imaging Spectrometer (EIS) at the source regions was then compared with the in-situ solar wind composition. On hourly timescales there was no apparent correlation between coronal and solar wind composition. In contrast, the distribution of fractionation values within individual source regions was similar in both the corona and solar wind, but distributions between different sources have significant overlap. The matching distributions directly verifies that elemental composition is conserved as the plasma travels from the corona to the solar wind, further validating it as a tracer of heating and acceleration processes. The overlap of fractionation values between sources means it is not possible to identify solar wind source regions solely by comparing solar wind and coronal composition measurements, but a comparison can be used to verify consistency with predicted spacecraft-corona connections.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا