Do you want to publish a course? Click here

Directly comparing coronal and solar wind elemental fractionation

115   0   0.0 ( 0 )
 Added by David Stansby
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

As the solar wind propagates through the heliosphere, dynamical processes irreversibly erase the signatures of the near-Sun heating and acceleration processes. The elemental fractionation of the solar wind should not change during transit however, making it an ideal tracer of these processes. We aimed to verify directly if the solar wind elemental fractionation is reflective of the coronal source region fractionation, both within and across different solar wind source regions. A backmapping scheme was used to predict where solar wind measured by the Advanced Composition Explorer (ACE) originated in the corona. The coronal composition measured by the Hinode Extreme ultraviolet Imaging Spectrometer (EIS) at the source regions was then compared with the in-situ solar wind composition. On hourly timescales there was no apparent correlation between coronal and solar wind composition. In contrast, the distribution of fractionation values within individual source regions was similar in both the corona and solar wind, but distributions between different sources have significant overlap. The matching distributions directly verifies that elemental composition is conserved as the plasma travels from the corona to the solar wind, further validating it as a tracer of heating and acceleration processes. The overlap of fractionation values between sources means it is not possible to identify solar wind source regions solely by comparing solar wind and coronal composition measurements, but a comparison can be used to verify consistency with predicted spacecraft-corona connections.



rate research

Read More

Similar to the Sun, other stars shed mass and magnetic flux via ubiquitous quasi-steady wind and episodic stellar coronal mass ejections (CMEs). We investigate the mass loss rate via solar wind and CMEs as a function of solar magnetic variability represented in terms of sunspot number and solar X-ray background luminosity. We estimate the contribution of CMEs to the total solar wind mass flux in the ecliptic and beyond, and its variation over different phases of the solar activity cycles. The study exploits the number of sunspots observed, coronagraphic observations of CMEs near the Sun by SOHO/LASCO, in situ observations of the solar wind at 1 AU by WIND, and GOES X-ray flux during solar cycle 23 and 24. We note that the X-ray background luminosity, occurrence rate of CMEs and ICMEs, solar wind mass flux, and associated mass loss rates from the Sun do not decrease as strongly as the sunspot number from the maximum of solar cycle 23 to the next maximum. Our study confirms a true physical increase in CME activity relative to the sunspot number in cycle 24. We show that the CME occurrence rate and associated mass loss rate can be better predicted by X-ray background luminosity than the sunspot number. The solar wind mass loss rate which is an order of magnitude more than the CME mass loss rate shows no obvious dependency on cyclic variation in sunspot number and solar X-ray background luminosity. These results have implications to the study of solar-type stars.
We comparatively studied the long-term variation (1992-2017) in polar brightening observed with the Nobeyama Radioheliograph, the polar solar wind velocity with interplanetary scintillation observations at the Institute for Space-Earth Environmental Research, and the coronal hole distribution computed by potential field calculations of the solar corona using synoptic magnetogram data obtained at Kitt Peak National Solar Observatory. First, by comparing the solar wind velocity (V) and the brightness temperature (T_b) in the polar region, we found good correlation coefficients (CCs) between V and T_b in the polar regions, CC = 0.91 (0.83) for the northern (southern) polar region, and we obtained the V-T_b relationship as V =12.6 (T_b-10,667)^{1/2}+432. We also confirmed that the CC of V-T_b is higher than those of V-B and V-B/f, where B and f are the polar magnetic field strength and magnetic flux expansion rate, respectively. These results indicate that T_b is a more direct parameter than B or B/f for expressing solar wind velocity. Next, we analyzed the long-term variation of the polar brightening and its relation to the area of the polar coronal hole (A). As a result, we found that the polar brightening matches the probability distribution of the predicted coronal hole and that the CC between T_b and A is remarkably high, CC = 0.97. This result indicates that the polar brightening is strongly coupled to the size of the polar coronal hole. Therefore, the reasonable correlation of V-T_b is explained by V-A. In addition, by considering the anti-correlation between A and f found in a previous study, we suggest that the V-T_b relationship is another expression of the Wang-Sheeley relationship (V-1/f) in the polar regions.
Context. The Suns complex corona is the source of the solar wind and interplanetary magnetic field. While the large scale morphology is well understood, the impact of variations in coronal properties on the scale of a few degrees on properties of the interplanetary medium is not known. Solar Orbiter, carrying both remote sensing and in situ instruments into the inner solar system, is intended to make these connections better than ever before. Aims. We combine remote sensing and in situ measurements from Solar Orbiters first perihelion at 0.5 AU to study the fine scale structure of the solar wind from the equatorward edge of a polar coronal hole with the aim of identifying characteristics of the corona which can explain the in situ variations. Methods. We use in situ measurements of the magnetic field, density and solar wind speed to identify structures on scales of hours at the spacecraft. Using Potential Field Source Surface mapping we estimate the source locations of the measured solar wind as a function of time and use EUI images to characterise these solar sources. Results. We identify small scale stream interactions in the solar wind with compressed magnetic field and density along with speed variations which are associated with corrugations in the edge of the coronal hole on scales of several degrees, demonstrating that fine scale coronal structure can directly influence solar wind properties and drive variations within individual streams. Conclusions. This early analysis already demonstrates the power of Solar Orbiters combined remote sensing and in situ payload and shows that with future, closer perihelia it will be possible dramatically to improve our knowledge of the coronal sources of fine scale solar wind structure, which is important both for understanding the phenomena driving the solar wind and predicting its impacts at the Earth and elsewhere.
The fourth orbit of Parker Solar Probe (PSP) reached heliocentric distances down to 27.9 Rs, allowing solar wind turbulence and acceleration mechanisms to be studied in situ closer to the Sun than previously possible. The turbulence properties were found to be significantly different in the inbound and outbound portions of PSPs fourth solar encounter, likely due to the proximity to the heliospheric current sheet (HCS) in the outbound period. Near the HCS, in the streamer belt wind, the turbulence was found to have lower amplitudes, higher magnetic compressibility, a steeper magnetic field spectrum (with spectral index close to -5/3 rather than -3/2), a lower Alfvenicity, and a 1/f break at much lower frequencies. These are also features of slow wind at 1 au, suggesting the near-Sun streamer belt wind to be the prototypical slow solar wind. The transition in properties occurs at a predicted angular distance of ~4{deg} from the HCS, suggesting ~8{deg} as the full-width of the streamer belt wind at these distances. While the majority of the Alfvenic turbulence energy fluxes measured by PSP are consistent with those required for reflection-driven turbulence models of solar wind acceleration, the fluxes in the streamer belt are significantly lower than the model predictions, suggesting that additional mechanisms are necessary to explain the acceleration of the streamer belt solar wind.
Coronal holes (CHs) are regions of open magnetic flux which are the source of high speed solar wind (HSSW) streams. To date, it is not clear which aspects of CHs are of most influence on the properties of the solar wind as it expands through the Heliosphere. Here, we study the relationship between CH properties extracted from AIA (Atmospheric Imaging Assembly) images using CHIMERA (Coronal Hole Identification via Multi-thermal Emission Recognition Algorithm) and HSSW measurements from ACE (Advanced Composition Explorer) at L1. For CH longitudinal widths $Deltatheta_{CH}<$67$^{circ}$, the peak SW velocity ($v_{max}$) is found to scale as $v_{max}~approx~330.8~+~5.7~Deltatheta_{CH}$~km~s$^{-1}$. For larger longitudinal widths ($Deltatheta_{CH}>$67$^{circ}$), $v_{max}$ is found to tend to a constant value ($sim$710~km~s$^{-1}$). Furthermore, we find that the duration of HSSW streams ($Delta t$) are directly related to the longitudinal width of CHs ($Delta t_{SW}$~$approx$~0.09$Deltatheta_{CH}$) and that their longitudinal expansion factor is $f_{SW}~approx 1.2~pm 0.1$. We also derive an expression for the coronal hole flux-tube expansion factor, $f_{FT}$, which varies as $f_{SW} gtrsim f_{FT} gtrsim 0.8$. These results enable us to estimate the peak speeds and durations of HSSW streams at L1 using the properties of CHs identified in the solar corona.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا