Do you want to publish a course? Click here

Energy Efficiency and Spectral Efficiency Tradeoff in RIS-Aided Multiuser MIMO Uplink Transmission

201   0   0.0 ( 0 )
 Added by Li You
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The emergence of reconfigurable intelligent surfaces (RISs) enables us to establish programmable radio wave propagation that caters for wireless communications, via employing low-cost passive reflecting units. This work studies the non-trivial tradeoff between energy efficiency (EE) and spectral efficiency (SE) in multiuser multiple-input multiple-output (MIMO) uplink communications aided by a RIS equipped with discrete phase shifters. For reducing the required signaling overhead and energy consumption, our transmission strategy design is based on the partial channel state information (CSI), including the statistical CSI between the RIS and user terminals (UTs) and the instantaneous CSI between the RIS and the base station. To investigate the EE-SE tradeoff, we develop a framework for the joint optimization of UTs transmit precoding and RIS reflective beamforming to maximize a performance metric called resource efficiency (RE). For the design of UTs precoding, it is simplified into the design of UTs transmit powers with the aid of the closed-form solutions of UTs optimal transmit directions. To avoid the high complexity in computing the nested integrals involved in the expectations, we derive an asymptotic deterministic objective expression. For the design of the RIS phases, an iterative mean-square error minimization approach is proposed via capitalizing on the homotopy, accelerated projected gradient, and majorization-minimization methods. Numerical results illustrate the effectiveness and rapid convergence rate of our proposed optimization framework.



rate research

Read More

As a key technology for future wireless networks, massive multiple-input multiple-output (MIMO) can significantly improve the energy efficiency (EE) and spectral efficiency (SE), and the performance is highly dependant on the degree of the available channel state information (CSI). While most existing works on massive MIMO focused on the case where the instantaneous CSI at the transmitter (CSIT) is available, it is usually not an easy task to obtain precise instantaneous CSIT. In this paper, we investigate EE-SE tradeoff in single-cell massive MIMO downlink transmission with statistical CSIT. To this end, we aim to optimize the system resource efficiency (RE), which is capable of striking an EE-SE balance. We first figure out a closed-form solution for the eigenvectors of the optimal transmit covariance matrices of different user terminals, which indicates that beam domain is in favor of performing RE optimal transmission in massive MIMO downlink. Based on this insight, the RE optimization precoding design is reduced to a real-valued power allocation problem. Exploiting the techniques of sequential optimization and random matrix theory, we further propose a low-complexity suboptimal two-layer water-filling-structured power allocation algorithm. Numerical results illustrate the effectiveness and near-optimal performance of the proposed statistical CSI aided RE optimization approach.
This paper considers the application of reconfigurable intelligent surfaces (RISs) (a.k.a. intelligent reflecting surfaces (IRSs)) to assist multiuser multiple-input multiple-output (MIMO) uplink transmission from several multi-antenna user terminals (UTs) to a multi-antenna base station (BS). For reducing the signaling overhead, only partial channel state information (CSI), including the instantaneous CSI between the RIS and the BS as well as the slowly varying statistical CSI between the UTs and the RIS, is exploited in our investigation. In particular, an optimization framework is proposed for jointly designing the transmit covariance matrices of the UTs and the RIS phase shift matrix to maximize the system global energy efficiency (GEE) with partial CSI. We first obtain closed-form solutions for the eigenvectors of the optimal transmit covariance matrices of the UTs. Then, to facilitate the design of the transmit power allocation matrices and the RIS phase shifts, we derive an asymptotically deterministic equivalent of the objective function with the aid of random matrix theory. We further propose a suboptimal algorithm to tackle the GEE maximization problem with guaranteed convergence, capitalizing on the approaches of alternating optimization, fractional programming, and sequential optimization. Numerical results substantiate the effectiveness of the proposed approach as well as the considerable GEE gains provided by the RIS-assisted transmission scheme over the traditional baselines.
In wireless communication systems, the nonlinear effect and inefficiency of power amplifier (PA) have posed practical challenges for system designs to achieve high spectral efficiency (SE) and energy efficiency (EE). In this paper, we analyze the impact of PA on the SE-EE tradeoff of orthogonal frequency division multiplex (OFDM) systems. An ideal PA that is always linear and incurs no additional power consumption can be shown to yield a decreasing convex function in the SE-EE tradeoff. In contrast, we show that a practical PA has an SE-EE tradeoff that has a turning point and decreases sharply after its maximum EE point. In other words, the Pareto-optimal tradeoff boundary of the SE-EE curve is very narrow. A wide range of SE-EE tradeoff, however, is desired for future wireless communications that have dynamic demand depending on the traffic loads, channel conditions, and system applications, e.g., high-SE-with-low-EE for rate-limited systems and high-EE-with-low-SE for energy-limited systems. For the SE-EE tradeoff improvement, we propose a PA switching (PAS) technique. In a PAS transmitter, one or more PAs are switched on intermittently to maximize the EE and deliver an overall required SE. As a consequence, a high EE over a wide range SE can be achieved, which is verified by numerical evaluations: with 15% SE reduction for low SE demand, the PAS between a low power PA and a high power PA can improve EE by 323%, while a single high power PA transmitter improves EE by only 68%.
User electromagnetic (EM) exposure is continuously being exacerbated by the evolution of multi-antenna portable devices. To mitigate the effects of EM radiation, portable devices must satisfy tight regulations on user exposure level, generally measured by specific absorption rate (SAR). To this end, we investigate the SAR-aware uplink precoder design for the energy efficiency (EE) maximization in multiuser multiple-input multiple-output transmission exploiting statistical channel state information (CSI). As the objective function of the design problem is computationally demanding in the absence of closed form, we present an asymptotic approximation of the objective to facilitate the precoder design. An iterative algorithm based on Dinkelbachs method and sequential optimization is proposed to obtain an optimal solution of the asymptotic EE optimization problem. Based on the transformed problem, an iterative SAR-aware water-filing scheme is further conceived for the EE optimization precoding design with statistical CSI. Numerical results illustrate substantial performance improvements provided by our proposed SAR-aware energy-efficient transmission scheme over the traditional baseline schemes.
A massive multiple input multiple-output system is very important to optimize the trade-off energy efficiency and spectral efficiency in fifth-generation cellular networks. The challenges for the next generation depend on increasing the high data traffic in the wireless communication system for both EE and SE. In this paper, the trade off energy efficiency and spectral efficiency based on the first derivative of transmit antennas and transmit power in a downlink massive MIMO system has been investigated. The trade off EE-SE by using a multiobjective optimization problem to decrease transmit power has been analyzed. The EE and SE based on constraint maximum transmit power allocation and a number of antennas by computing the first derivative of transmit power to maximize the trade-off energy efficiency and spectral efficiency has been improved. From the simulation results, the optimum trade-off between EE and SE can be obtained based on the first derivative by selecting the optimal antennas with a low cost of transmit power. Therefore, based on an optimal optimization problem is flexible to make trade-offs between EE-SE for distinct preferences
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا