Do you want to publish a course? Click here

Exploring the origin of stars on bound and unbound orbits causing tidal disruption events

65   0   0.0 ( 0 )
 Added by Kimitake Hayasaki
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Tidal disruption events (TDEs) probe properties of supermassive black holes (SMBHs), their accretion disks, and the surrounding nuclear stellar cluster. Light curves of TDEs are related to orbital properties of stars falling SMBHs. We study the origin, density, and velocity distributions of bound and unbound stars in the nuclear star cluster, which are causing TDEs as a function of their orbital eccentricity $e$ and energy $E$. These quantities determine near the SMBH the ratio of the orbits pericenter to tidal disruption radii (denoted as penetration factor, $beta$). We develop an analytical model for the density and velocity distribution of such stars in the cluster, which agrees well with N-body experiments. Our model extends classical models of angular momentum diffusion in the loss cone. We also derive an analytical model for three characteristic eccentricities in the loss cone: the minimum and maximum value for given $beta$, respectively, and $e_{rm lcb}$, which represents the orbital eccentricity defining the boundary between empty and full loss cone regimes. With N-body experiments, we show that stars causing TDEs are distributed between these eccentricity limits on the $e-beta$ plane. Moreover, we find most of the bound stars between $e_{rm lcb}$ and $e=1$ (i.e., the full loss cone regime), whereas the remaining bound stars are originating from the empty loss cone regime. This is consistent with the loss cone theory. We propose that the $e-beta$ distribution of stars in a star cluster or galactic nucleus can be a good tool to diagnose whether the stars can cause TDEs.



rate research

Read More

206 - K. Decker French 2020
Recent studies of Tidal Disruption Events (TDEs) have revealed unexpected correlations between the TDE rate and the large-scale properties of the host galaxies. In this review, we present the host galaxy properties of all TDE candidates known to date and quantify their distributions. We consider throughout the differences between observationally-identified types of TDEs and differences from spectroscopic control samples of galaxies. We focus here on the black hole and stellar masses of TDE host galaxies, their star formation histories and stellar populations, the concentration and morphology of the optical light, the presence of AGN activity, and the extra-galactic environment of the TDE hosts. We summarize the state of several possible explanations for the links between the TDE rate and host galaxy type. We present estimates of the TDE rate for different host galaxy types and quantify the degree to which rate enhancement in some types results in rate suppression in others. We discuss the possibilities for using TDE host galaxies to assist in identifying TDEs in upcoming large transient surveys and possibilities for TDE observations to be used to study their host galaxies.
102 - Kimitake Hayasaki 2021
Tidal disruption events are an excellent probe for supermassive black holes in distant inactive galaxies because they show bright multi-wavelength flares lasting several months to years. AT2019dsg presents the first potential association with neutrino emission from such an explosive event.
We propose a model to explain the time delay between the peak of the optical and X-ray luminosity, dt hereafter, in UV/optically-selected tidal disruption events (TDEs). The following picture explains the observed dt in several TDEs as a consequence of the circularization and disk accretion processes as long as the sub-Eddington accretion. At the beginning of the circularization, the fallback debris is thermalized by the self-crossing shock caused by relativistic precession, providing the peak optical emission. During the circularization process, the mass fallback rate decreases with time to form a ring around the supermassive black hole (SMBH). The formation timescale corresponds to the circularization timescale of the most tightly bound debris, which is less than a year to several decades, depending mostly on the penetration factor, the circularization efficiency, and the black hole mass. The ring will subsequently evolve viscously over the viscous diffusion time. We find that it accretes onto the SMBH on a fraction of the viscous timescale, which is $2$ years for given typical parameters, leading to X-ray emission at late times. The resultant dt,is given by the sum of the circularization timescale and the accretion timescale and significantly decreases with increasing penetration factor to several to $sim10$ years typically. Since the X-ray luminosity substantially decreases as the viewing angle between the normal to the disk plane and line-of-sight increases from $0^circ$ to $90^circ$, a low late-time X-ray luminosity can be explained by an edge-on view. We also discuss the super-Eddington accretion scenario, where dt,is dominated by the circularization timescale.
131 - Renyue Cen 2019
A starburst induced by a galaxy merger may create a relatively thin central stellar disk at radius $le 100$pc. We calculate the rate of tidal disruption events (TDEs) by the inspiraling secondary supermassive black (SMBH) through the disk. With a small enough stellar velocity dispersion ($sigma/v_c le 0.1$) in the disk, it is shown that $10^5-10^6$ TDEs of solar-type main sequence stars per post-starburst galaxy (PSB) can be produced to explain their dominance in producing observed TDEs. Although the time it takes to bring the secondary SMBH to the disk apparently varies in the range of $sim 0.1-1$Gyr since the starburst, depending on its landing location and subsequently due to dynamical friction with stars exterior to the central stellar disk in question, the vast majority of TDEs by the secondary SMBH in any individual PSB occurs within a space of time shorter than $sim 30$Myr. Five unique testable predictions of this model are suggested.
Recent claimed detections of tidal disruption events (TDEs) in multi-wavelength data have opened potential new windows into the evolution and properties of otherwise dormant supermassive black holes (SMBHs) in the centres of galaxies. At present, there are several dozen TDE candidates, which share some properties and differ in others. The range in properties is broad enough to overlap other transient types, such as active galactic nuclei (AGN) and supernovae (SNe), which can make TDE classification ambiguous. A further complication is that TDE signatures have not been uniformly observed to similar sensitivities or even targeted across all candidates. This chapter reviews those events that are unusual relative to other TDEs, including the possibility of TDEs in pre-existing AGN, and summarises those characteristics thought to best distinguish TDEs from continuously accreting AGN, strongly flaring AGN, SNe, and Gamma-Ray Bursts (GRBs), as well as other potential impostors like stellar collisions, micro-TDEs, and circumbinary accretion flows. We conclude that multiple observables should be used to classify any one event as a TDE. We also consider the TDE candidate population as a whole, which, for certain host galaxy or SMBH characteristics, is distinguishable statistically from non-TDEs, suggesting that at least some TDE candidates do in fact arise from SMBH-disrupted stars.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا