Do you want to publish a course? Click here

Field-Tuned Quantum Effects in a Triangular-Lattice Ising Magnet

380   0   0.0 ( 0 )
 Added by Yao Shen
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report thermodynamic and neutron scattering measurements of the triangular-lattice quantum Ising magnet TmMgGaO 4 in longitudinal magnetic fields. Our experiments reveal a quasi-plateau state induced by quantum fluctuations. This state exhibits an unconventional non-monotonic field and temperature dependence of the magnetic order and excitation gap. In the high field regime where the quantum fluctuations are largely suppressed, we observed a disordered state with coherent magnon-like excitations despite the suppression of the spin excitation intensity. Through detailed semi-classical calculations, we are able to understand these behaviors quantitatively from the subtle competition between quantum fluctuations and frustrated Ising interactions.



rate research

Read More

A toroidal dipole moment appears independent of the electric and magnetic dipole moment in the multipole expansion of electrodynamics. It arises naturally from vortex-like arrangements of spins. Observing and controlling spontaneous long-range orders of toroidal moments are highly promising for spintronics but remain challenging. Here we demonstrate that a vortex-like spin configuration with a staggered arrangement of toroidal moments, a ferritoroidal state, is realized in a chiral triangular-lattice magnet BaCoSiO4. Upon applying a magnetic field, we observe multi-stair toroidal transitions correlating directly with metamagnetic transitions. We establish a first-principles microscopic Hamiltonian that explains both the formation of toroidal states and the metamagnetic toroidal transition as a combined effect of the magnetic frustration and the Dzyaloshinskii-Moriya interactions allowed by the crystallographic chirality in BaCoSiO4.
A phase transition is often accompanied by the appearance of an order parameter and symmetry breaking. Certain magnetic materials exhibit exotic hidden-order phases, in which the order parameters are not directly accessible to conventional magnetic measurements. Thus, experimental identification and theoretical understanding of a hidden order are difficult. Here we combine neutron scattering and thermodynamic probes to study the newly discovered rare-earth triangular-lattice magnet TmMgGaO$_4$. Clear magnetic Bragg peaks at K points are observed in the elastic neutron diffraction measurements. More interesting, however, is the observation of sharp and highly dispersive spin excitations that cannot be explained by a magnetic dipolar order, but instead is the direct consequence of the underlying multipolar order that is hidden in the neutron diffraction experiments. We demonstrate that the observed unusual spin correlations and thermodynamics can be accurately described by a transverse field Ising model on the triangular lattice with an intertwined dipolar and ferro-multipolar order.
The magnetic phases of a triangular-lattice antiferromagnet, CuCrO$_2$, were investigated in magnetic fields along to the $c$ axis, $H$ // [001], up to 120 T. Faraday rotation and magneto-absorption spectroscopy were used to unveil the rich physics of magnetic phases. An up-up-down (UUD) magnetic structure phase was observed around 90--105 T at temperatures around 10 K. Additional distinct anomalies adjacent to the UUD phase were uncovered and the Y-shaped and the V-shaped phases are proposed to be viable candidates. These ordered phases are emerged as a result of the interplay of geometrical spin frustration, single ion anisotropy and thermal fluctuations in an environment of extremely high magnetic fields.
Platelike high-quality NaYbS$_{2}$ rhombohedral single crystals with lateral dimensions of a few mm have been grown and investigated in great detail by bulk methods like magnetization and specific heat, but also by local probes like nuclear magnetic resonance (NMR), electron-spin resonance (ESR), muon-spin relaxation ($mu$SR), and inelastic neutron scattering (INS) over a wide field and temperature range. Our single-crystal studies clearly evidence a strongly anisotropic quasi-2D magnetism and an emerging spin-orbit entangled $S=1/2$ state of Yb towards low temperatures together with an absence of long-range magnetic order down to 260~mK. In particular, the clear and narrow Yb ESR lines together with narrow $^{23}$Na NMR lines evidence an absence of inherent structural distortions in the system, which is in strong contrast to the related spin-liquid candidate YbMgGaO$_{4}$ falling within the same space group $Roverline{3}m$. This identifies NaYbS$_{2}$ as a rather pure spin-1/2 triangular lattice magnet and a new putative quantum spin liquid.
Frustrated Ising magnets host exotic excitations, such as magnetic monopoles in spin ice. The ground state (GS) in this case is characterized by an extensive degeneracy and associated residual entropy going back to the pioneering work by G. Wannier who established large residual entropy of nearly 50%Rln2 per mole spins in a triangular Ising antiferromagnet (TIAF) already in 1950. Here, we endeavor to verify this result experimentally using TmMgGaO4, a novel rare-earth-based frustrated antiferromagnet with Ising spins arranged on a perfect triangular lattice. Contrary to theoretical expectations, we find almost no residual entropy and ascribe this result to the presence of a weak second-neighbor coupling J2zz ~ 0.09J1zz that lifts the GS degeneracy and gives rise to several ordered states, the stripe order, 1/3-plateau, and 1/2-plateau. TmMgGaO4 gives experimental access to these novel phases of Ising spins on the triangular lattice.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا