No Arabic abstract
Frustrated Ising magnets host exotic excitations, such as magnetic monopoles in spin ice. The ground state (GS) in this case is characterized by an extensive degeneracy and associated residual entropy going back to the pioneering work by G. Wannier who established large residual entropy of nearly 50%Rln2 per mole spins in a triangular Ising antiferromagnet (TIAF) already in 1950. Here, we endeavor to verify this result experimentally using TmMgGaO4, a novel rare-earth-based frustrated antiferromagnet with Ising spins arranged on a perfect triangular lattice. Contrary to theoretical expectations, we find almost no residual entropy and ascribe this result to the presence of a weak second-neighbor coupling J2zz ~ 0.09J1zz that lifts the GS degeneracy and gives rise to several ordered states, the stripe order, 1/3-plateau, and 1/2-plateau. TmMgGaO4 gives experimental access to these novel phases of Ising spins on the triangular lattice.
We report a comprehensive investigation of the magnetism of the $S$ = 3/2 triangular-lattice antiferromagnet, $alpha$-CrOOH(D) (delafossites green-grey powder). The nearly Heisenberg antiferromagnetic Hamiltonian ($J_1$ $sim$ 23.5 K) with a weak single-ion anisotropy of $|D|$/$J_1$ $sim$ 4.6% is quantitatively determined by fitting to the electron spin resonance (ESR) linewidth and susceptibility measured at high temperatures. The weak single-ion anisotropy interactions, possibly along with other perturbations, e.g. next-nearest-neighbor interactions, suppress the long-range magnetic order and render the system disordered, as evidenced by both the absence of any clear magnetic reflections in neutron diffraction and the presence of the dominant paramagnetic ESR signal down to 2 K ($sim$ 0.04$J_1$$S^2$), where the magnetic entropy is almost zero. The power-law behavior of specific heat ($C_m$ $sim$ $T^{2.2}$) observed below the freezing temperature of $T_f$ = 25 K in $alpha$-CrOOH or below $T_f$ = 22 K in $alpha$-CrOOD is insensitive to the external magnetic field, and thus is consistent with the theoretical prediction of a gapless U(1) Dirac quantum spin liquid (QSL) ground state. At low temperatures, the spectral weight of the low-energy continuous spin excitations accumulates at the K points of the Brillouin zone, e.g. $|mathbf{Q}|$ = 4$pi$/(3$a$), and the putative Dirac cones are clearly visible. Our work is a first step towards the understanding of the possible Dirac QSL ground state in this triangular-lattice magnet with $S$ = 3/2.
Quantum spin liquid (QSL) is a novel state of matter which refuses the conventional spin freezing even at 0 K. Experimentally searching for the structurally perfect candidates is a big challenge in condensed matter physics. Here we report the successful synthesis of a new spin-1/2 triangular antiferromagnet YbMgGaO$_4$ with R$bar{3}$m symmetry. The compound with an ideal two-dimensional and spatial isotropic magnetic triangular-lattice has no site-mixing magnetic defects and no antisymmetric Dzyaloshinsky-Moriya (DM) interactions. No spin freezing down to 60 mK (despite $Theta$$_w$ $sim$ -4 K), the low-T power-law temperature dependence of heat capacity and nonzero susceptibility suggest that YbMgGaO$_4$ is a promising gapless ($leq$ $|$$Theta$$_w$$|$/100) QSL candidate. The residual spin entropy, which is accurately determined with a non-magnetic reference LuMgGaO$_4$, approaches zero ($<$ 0.6 %). This indicates that the possible QSL ground state (GS) of the frustrated spin system has been experimentally achieved at the lowest measurement temperatures.
The $S$ = $frac{1}{2}$ kagome Heisenberg antiferromagnet (KHA) is a leading model hosting a quantum spin liquid (QSL), but the exact nature of its ground state remains a key issue under debate. In the previously well-studied candidate materials, magnetic defects always dominate the low-energy spectrum and hinder the detection of the intrinsic nature. We demonstrate that the new single crystal of YCu$_3$[OH(D)]$_{6.5}$Br$_{2.5}$ is a perfect KHA without evident magnetic defects ($ll$ 0.8%). Through fitting the magnetic susceptibilities of the orientated single crystals, we find the spin system with weak anisotropic interactions and with first-, second-, and third-neighbor couplings, $J_1$ $sim$ 56 K and $J_2$ $sim$ $J_3$ $sim$ 0.1$J_1$, belongs to the continuous family of fully frustrated KHAs. No conventional freezing is observed down to 0.36 K $sim$ 0.006$J_1$, and the raw specific heat exhibits a nearly quadratic temperature dependence below 1 K $sim$ 0.02$J_1$, well consistent with a gapless (spin gap $leq$ 0.025$J_1$) Dirac QSL.
Water ice and spin ice are important model systems in which theory can directly account for zero point entropy associated with quenched configurational disorder. Spin ice differs from water ice in the important respect that its fundamental constituents, the spins of the magnetic ions, can be removed through replacement with non-magnetic ions while keeping the lattice structure intact. In order to investigate the interplay of frustrated interactions and quenched disorder, we have performed systematic heat capacity measurements on spin ice materials which have been thus diluted up to 90%. Investigations of both Ho and Dy spin ices reveal that the zero point entropy depends non-monotonically on dilution and approaches the value of Rln2 in the limit of high dilution. The data are in good agreement with a generalization of Paulings theory for the entropy of ice.
We report on comprehensive results identifying the ground state of a triangular-lattice structured YbZnGaO$_4$ to be spin glass, including no long-range magnetic order, prominent broad excitation continua, and absence of magnetic thermal conductivity. More crucially, from the ultralow-temperature a.c. susceptibility measurements, we unambiguously observe frequency-dependent peaks around 0.1 K, indicating the spin-glass ground state. We suggest this conclusion to hold also for its sister compound YbMgGaO$_4$, which is confirmed by the observation of spin freezing at low temperatures. We consider disorder and frustration to be the main driving force for the spin-glass phase.