Do you want to publish a course? Click here

A wide planetary-mass companion to a young low-mass brown dwarf in Ophiuchus

302   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the discovery of a planetary-mass companion to CFHTWIR-Oph 98, a low-mass brown dwarf member of the young Ophiuchus star-forming region, with a wide 200-au separation (1.46 arcsec). The companion was identified using Hubble Space Telescope images, and confirmed to share common proper motion with the primary using archival and new ground-based observations. Based on the very low probability of the components being unrelated Ophiuchus members, we conclude that Oph 98 AB forms a binary system. From our multi-band photometry, we constrain the primary to be an M9-L1 dwarf, and the faint companion to have an L2-L6 spectral type. For a median age of 3 Myr for Ophiuchus, fits of evolutionary models to measured luminosities yield masses of $15.4pm0.8$ M$_mathrm{Jup}$ for Oph 98 A and $7.8pm0.8$ M$_mathrm{Jup}$ for Oph 98 B, with respective effective temperatures of $2320pm40$ K and $1800pm40$ K. For possible system ages of 1-7 Myr, masses could range from 9.6-18.4 M$_mathrm{Jup}$ for the primary, and from 4.1-11.6 M$_mathrm{Jup}$ for the secondary. The low component masses and very large separation make this binary the lowest binding energy system imaged to date, indicating that the outcome of low-mass star formation can result in such extreme, weakly-bound systems. With such a young age, Oph 98 AB extends the growing population of young free-floating planetary-mass objects, offering a new benchmark to refine formation theories at the lowest masses.



rate research

Read More

91 - P. Delorme , T. Dupuy , J. Gagne 2017
We conducted a multi-wavelength, multi-instrument observational characterisation of the candidate free-floating planet CFBDSIR~J214947.2-040308.9, a late T-dwarf with possible low-gravity features, in order to constrain its physical properties. We analyzed 9 hours of X-Shooter spectroscopy with signal detectable from 0.8--2.3$mu$m, as well as additional photometry in the mid-infrared using the Spitzer Space Telescope. Combined with a VLT/HAWK-I astrometric parallax, this enabled a full characterisation of the absolute flux from the visible to 5$mu$m, encompassing more than 90% of the expected energy emitted by such a cool late T-type object. Our analysis of the spectrum also provided the radial velocity and therefore the determination of its full 3-D kinematics. While our new spectrum confirms the low gravity and/or high metallicity of CFBDSIR2149, the parallax and kinematics safely rule out membership to any known young moving group, including AB~Doradus. We use the equivalent width of the KI doublet at 1.25$mu$m as a promising tool to discriminate the effects of low-gravity from the effects of high-metallicity on the emission spectra of cool atmospheres. In the case of CFBDSIR2149, the observed KI doublet clearly favours the low-gravity solution. CFBDSIR2149 is therefore a peculiar late-T dwarf that is probably a young, planetary-mass object (2--13Mjup, $<$500Myr) possibly similar to the exoplanet 51Erib, or perhaps a 2--40Mjup brown dwarf with super-solar metallicity.
215 - Niall R Deacon 2016
We present the identification of two previously known young objects in the solar neighbourhood as a likely very wide binary. TYC 9486-927-1, an active, rapidly rotating early-M dwarf, and 2MASS J21265040-8140293, a low-gravity L3 dwarf previously identified as candidate members of the $sim$45 Myr old Tucana Horologium association (TucHor). An updated proper motion measurement of the L3 secondary, and a detailed analysis of the pairs kinematics in the context of known nearby, young stars, reveals that they share common proper motion and are likely bound. New observations and analyses reveal the primary exhibits Li 6708~AA~absorption consistent with M dwarfs younger than TucHor but older than the $sim$10 Myr TW Hydra association yielding an age range of 10-45 Myr. A revised kinematic analysis suggests the space motions and positions of the pair are closer to, but not entirely in agreement with, the $sim$24 Myr old $beta$ Pictoris moving group. This revised 10-45 Myr age range yields a mass range of 11.6--15 M$_J$ for the secondary. It is thus likely 2MASS J21265040-8140293short is the widest orbit planetary mass object known ($>$4500AU) and its estimated mass, age, spectral type, and $T_{eff}$ are similar to the well-studied planet $beta$ Pictoris b. Because of their extreme separation and youth, this low-mass pair provide an interesting case study for very wide binary formation and evolution.
We present the discovery of a co-moving planetary-mass companion ~42 (~2000 AU) from a young M3 star, GU Psc, likely member of the young AB Doradus Moving Group (ABDMG). The companion was first identified via its distinctively red i - z color (> 3.5) through a survey made with Gemini-S/GMOS. Follow-up Canada-France-Hawaii Telescope/WIRCam near-infrared (NIR) imaging, Gemini-N/GNIRS NIR spectroscopy and Wide-field Infrared Survey Explorer photometry indicate a spectral type of T3.5+-1 and reveal signs of low gravity which we attribute to youth. Keck/Adaptive Optics NIR observations did not resolve the companion as a binary. A comparison with atmosphere models indicates Teff = 1000-1100 K and logg = 4.5-5.0. Based on evolution models, this temperature corresponds to a mass of 9-13 MJup for the age of ABDMG (70-130 Myr). The relatively well-constrained age of this companion and its very large angular separation to its host star will allow its thorough characterization and will make it a valuable comparison for planetary-mass companions that will be uncovered by forthcoming planet-finder instruments such as Gemini Planet Imager and SPHERE.
We present a 3-5um LBT/MMT adaptive optics imaging study of three Upper Scorpius stars with brown dwarf (BD) companions with very low-masses/mass ratios (M_BD < 25M_Jup; M_BD / M_star ~ 1-2%), and wide separations (300-700 AU): GSC 06214, 1RXS 1609, and HIP 78530. We combine these new thermal IR data with existing 1-4um and 24um photometry to constrain the properties of the BDs and identify evidence for circumprimary/secondary disks in these unusual systems. We confirm that GSC 06214B is surrounded by a disk, further showing this disk produces a broadband IR excess due to small dust near the dust sublimation radius. An unresolved 24um excess in the system may be explained by the contribution from this disk. 1RXS 1609B exhibits no 3-4um excess, nor does its primary; however, the system as a whole has a modest 24um excess, which may come from warm dust around the primary and/or BD. Neither object in the HIP 78530 system exhibits near- to mid-IR excesses. We additionally find that the 1-4um colors of HIP 78530B match a spectral type of M3+-2, inconsistent with the M8 spectral type assigned based on its near-IR spectrum, indicating it may be a low-mass star rather than a BD. We present new upper limits on additional low-mass companions in the system (<5M_Jup beyond 175AU). Finally, we examine the utility of circumsecondary disks as probes of the formation histories of wide BD companions, finding that the presence of a disk may disfavor BD formation near the primary with subsequent outward scattering.
We present the direct imaging discovery of a substellar companion to the nearby Sun-like star, HD 33632 Aa, at a projected separation of $sim$ 20 au, obtained with SCExAO/CHARIS integral field spectroscopy complemented by Keck/NIRC2 thermal infrared imaging. The companion, HD 33632 Ab, induces a 10.5$sigma$ astrometric acceleration on the star as detected with the $Gaia$ and $Hipparcos$ satellites. SCExAO/CHARIS $JHK$ (1.1--2.4 $mu$m) spectra and Keck/NIRC2 $L_{rm p}$ (3.78 $mu$m) photometry are best matched by a field L/T transition object: an older, higher gravity, and less dusty counterpart to HR 8799 cde. Combining our astrometry with $Gaia/Hipparcos$ data and archival Lick Observatory radial-velocities, we measure a dynamical mass of 46.4 $pm$ 8 $M_{rm J}$ and an eccentricity of $e$ $<$0.46 at 95% confidence. HD 33632 Abs mass and mass ratio (4.0% $pm$ 0.7%) are comparable to the low-mass brown dwarf GJ 758 B and intermediate between the more massive brown dwarf HD 19467 B and the (near-)planet mass companions to HR 2562 and GJ 504. Using $Gaia$ to select for direct imaging observations with the newest extreme adaptive optics systems can reveal substellar or even planet-mass companions on solar system-like scales at an increased frequency compared to blind surveys.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا