No Arabic abstract
We present a 3-5um LBT/MMT adaptive optics imaging study of three Upper Scorpius stars with brown dwarf (BD) companions with very low-masses/mass ratios (M_BD < 25M_Jup; M_BD / M_star ~ 1-2%), and wide separations (300-700 AU): GSC 06214, 1RXS 1609, and HIP 78530. We combine these new thermal IR data with existing 1-4um and 24um photometry to constrain the properties of the BDs and identify evidence for circumprimary/secondary disks in these unusual systems. We confirm that GSC 06214B is surrounded by a disk, further showing this disk produces a broadband IR excess due to small dust near the dust sublimation radius. An unresolved 24um excess in the system may be explained by the contribution from this disk. 1RXS 1609B exhibits no 3-4um excess, nor does its primary; however, the system as a whole has a modest 24um excess, which may come from warm dust around the primary and/or BD. Neither object in the HIP 78530 system exhibits near- to mid-IR excesses. We additionally find that the 1-4um colors of HIP 78530B match a spectral type of M3+-2, inconsistent with the M8 spectral type assigned based on its near-IR spectrum, indicating it may be a low-mass star rather than a BD. We present new upper limits on additional low-mass companions in the system (<5M_Jup beyond 175AU). Finally, we examine the utility of circumsecondary disks as probes of the formation histories of wide BD companions, finding that the presence of a disk may disfavor BD formation near the primary with subsequent outward scattering.
We present the discovery of a planetary-mass companion to CFHTWIR-Oph 98, a low-mass brown dwarf member of the young Ophiuchus star-forming region, with a wide 200-au separation (1.46 arcsec). The companion was identified using Hubble Space Telescope images, and confirmed to share common proper motion with the primary using archival and new ground-based observations. Based on the very low probability of the components being unrelated Ophiuchus members, we conclude that Oph 98 AB forms a binary system. From our multi-band photometry, we constrain the primary to be an M9-L1 dwarf, and the faint companion to have an L2-L6 spectral type. For a median age of 3 Myr for Ophiuchus, fits of evolutionary models to measured luminosities yield masses of $15.4pm0.8$ M$_mathrm{Jup}$ for Oph 98 A and $7.8pm0.8$ M$_mathrm{Jup}$ for Oph 98 B, with respective effective temperatures of $2320pm40$ K and $1800pm40$ K. For possible system ages of 1-7 Myr, masses could range from 9.6-18.4 M$_mathrm{Jup}$ for the primary, and from 4.1-11.6 M$_mathrm{Jup}$ for the secondary. The low component masses and very large separation make this binary the lowest binding energy system imaged to date, indicating that the outcome of low-mass star formation can result in such extreme, weakly-bound systems. With such a young age, Oph 98 AB extends the growing population of young free-floating planetary-mass objects, offering a new benchmark to refine formation theories at the lowest masses.
We present an eccentric, short-period brown dwarf candidate orbiting the active, slightly evolved subgiant star TYC 2087-00255-1, which has effective temperature T_eff = 5903+/-42 K, surface gravity log (g) = 4.07+/-0.16 (cgs), and metallicity [Fe/H] = -0.23+/-0.07. This candidate was discovered using data from the first two years of the Multi-object APO Radial Velocity Exoplanets Large-area Survey (MARVELS), which is part of the third phase of Sloan Digital Sky Survey. From our 38 radial velocity measurements spread over a two-year time baseline, we derive a Keplerian orbital fit with semi-amplitude K=3.571+/-0.041 km/s, period P=9.0090+/-0.0004 days, and eccentricity e=0.226+/-0.011. Adopting a mass of 1.16+/-0.11 Msun for the subgiant host star, we infer that the companion has a minimum mass of 40.0+/-2.5 M_Jup. Assuming an edge-on orbit, the semimajor axis is 0.090+/-0.003 AU. The host star is photometrically variable at the sim1% level with a period of sim13.16+/-0.01 days, indicating that the host star spin and companion orbit are not synchronized. Through adaptive optics imaging we also found a point source 643+/-10 mas away from TYC 2087-00255-1, which would have a mass of 0.13 Msun if it is physically associated with TYC 2087-00255-1 and has the same age. Future proper motion observation should be able to resolve if this tertiary object is physically associated with TYC 2087-00255-1 and make TYC 2087-00255-1 a triple body system. Core Ca II H and K line emission indicate that the host is chromospherically active, at a level that is consistent with the inferred spin period and measured v_{rot}*sin i, but unusual for a subgiant of this T_eff. This activity could be explained by ongoing tidal spin-up of the host star by the companion.
We present the direct imaging discovery of a substellar companion to the nearby Sun-like star, HD 33632 Aa, at a projected separation of $sim$ 20 au, obtained with SCExAO/CHARIS integral field spectroscopy complemented by Keck/NIRC2 thermal infrared imaging. The companion, HD 33632 Ab, induces a 10.5$sigma$ astrometric acceleration on the star as detected with the $Gaia$ and $Hipparcos$ satellites. SCExAO/CHARIS $JHK$ (1.1--2.4 $mu$m) spectra and Keck/NIRC2 $L_{rm p}$ (3.78 $mu$m) photometry are best matched by a field L/T transition object: an older, higher gravity, and less dusty counterpart to HR 8799 cde. Combining our astrometry with $Gaia/Hipparcos$ data and archival Lick Observatory radial-velocities, we measure a dynamical mass of 46.4 $pm$ 8 $M_{rm J}$ and an eccentricity of $e$ $<$0.46 at 95% confidence. HD 33632 Abs mass and mass ratio (4.0% $pm$ 0.7%) are comparable to the low-mass brown dwarf GJ 758 B and intermediate between the more massive brown dwarf HD 19467 B and the (near-)planet mass companions to HR 2562 and GJ 504. Using $Gaia$ to select for direct imaging observations with the newest extreme adaptive optics systems can reveal substellar or even planet-mass companions on solar system-like scales at an increased frequency compared to blind surveys.
We present the results of ALMA band 7 observations of dust and CO gas in the disks around 7 objects with spectral types ranging between M5.5 and M7.5 in Upper Scorpius OB1, and one M3 star in Ophiuchus. We detect unresolved continuum emission in all but one source, and the $^{12}$CO J=3-2 line in two sources. We constrain the dust and gas content of these systems using a grid of models calculated with the radiative transfer code MCFOST, and find disk dust masses between 0.1 and 1 M$_oplus$, suggesting that the stellar mass / disk mass correlation can be extrapolated for brown dwarfs with masses as low as 0.05 M$_odot$. The one disk in Upper Sco in which we detect CO emission, 2MASS J15555600, is also the disk with warmest inner disk as traced by its H - [4.5] photometric color. Using our radiative transfer grid, we extend the correlation between stellar luminosity and mass-averaged disk dust temperature originally derived for stellar mass objects to the brown dwarf regime to $langle T_{dust} rangle approx 22 (L_{*} /L_{odot})^{0.16} K$, applicable to spectral types of M5 and later. This is slightly shallower than the relation for earlier spectral type objects and yields warmer low-mass disks. The two prescriptions cross at 0.27 L$_odot$, corresponding to masses between 0.1 and 0.2 M$_odot$ depending on age.
Up to now, most planet search projects have concentrated on F to K stars. In order to considerably widen the view, we have stated a survey for planets of old, nearby brown dwarfs and very low mass stars. Using UVES, we have observed 26 brown dwarfs and very low mass stars. These objects are quite inactive and are thus highly suitable for such a project. Two objects were found to be spectroscopic binaries. Another object shows significant radial velocity variations. From our measurements, we conclude that this object either has a planetary-mass companion, or the variations are caused by surface features. Within the errors of the measurements, the remaining objects are constant in radial velocity. While it is impossible to strictly exclude an orbiting planet from sparsely sampled RV data, we conclude that it is unlikely that these objects are orbited by massive planets with periods of 40 days or less.