Do you want to publish a course? Click here

Adversarial Training for Multi-domain Speaker Recognition

157   0   0.0 ( 0 )
 Added by Qing Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In real-life applications, the performance of speaker recognition systems always degrades when there is a mismatch between training and evaluation data. Many domain adaptation methods have been successfully used for eliminating the domain mismatches in speaker recognition. However, usually both training and evaluation data themselves can be composed of several subsets. These inner variances of each dataset can also be considered as different domains. Different distributed subsets in source or target domain dataset can also cause multi-domain mismatches, which are influential to speaker recognition performance. In this study, we propose to use adversarial training for multi-domain speaker recognition to solve the domain mismatch and the dataset variance problems. By adopting the proposed method, we are able to obtain both multi-domain-invariant and speaker-discriminative speech representations for speaker recognition. Experimental results on DAC13 dataset indicate that the proposed method is not only effective to solve the multi-domain mismatch problem, but also outperforms the compared unsupervised domain adaptation methods.



rate research

Read More

The goal of this work is to train robust speaker recognition models without speaker labels. Recent works on unsupervised speaker representations are based on contrastive learning in which they encourage within-utterance embeddings to be similar and across-utterance embeddings to be dissimilar. However, since the within-utterance segments share the same acoustic characteristics, it is difficult to separate the speaker information from the channel information. To this end, we propose augmentation adversarial training strategy that trains the network to be discriminative for the speaker information, while invariant to the augmentation applied. Since the augmentation simulates the acoustic characteristics, training the network to be invariant to augmentation also encourages the network to be invariant to the channel information in general. Extensive experiments on the VoxCeleb and VOiCES datasets show significant improvements over previous works using self-supervision, and the performance of our self-supervised models far exceed that of humans.
Research on speaker recognition is extending to address the vulnerability in the wild conditions, among which genre mismatch is perhaps the most challenging, for instance, enrollment with reading speech while testing with conversational or singing audio. This mismatch leads to complex and composite inter-session variations, both intrinsic (i.e., speaking style, physiological status) and extrinsic (i.e., recording device, background noise). Unfortunately, the few existing multi-genre corpora are not only limited in size but are also recorded under controlled conditions, which cannot support conclusive research on the multi-genre problem. In this work, we firstly publish CN-Celeb, a large-scale multi-genre corpus that includes in-the-wild speech utterances of 3,000 speakers in 11 different genres. Secondly, using this dataset, we conduct a comprehensive study on the multi-genre phenomenon, in particular the impact of the multi-genre challenge on speaker recognition, and on how to utilize the valuable multi-genre data more efficiently.
The recently proposed self-attentive pooling (SAP) has shown good performance in several speaker recognition systems. In SAP systems, the context vector is trained end-to-end together with the feature extractor, where the role of context vector is to select the most discriminative frames for speaker recognition. However, the SAP underperforms compared to the temporal average pooling (TAP) baseline in some settings, which implies that the attention is not learnt effectively in end-to-end training. To tackle this problem, we introduce strategies for training the attention mechanism in a supervised manner, which learns the context vector using classified samples. With our proposed methods, context vector can be boosted to select the most informative frames. We show that our method outperforms existing methods in various experimental settings including short utterance speaker recognition, and achieves competitive performance over the existing baselines on the VoxCeleb datasets.
In this report, we describe the Beijing ZKJ-NPU team submission to the VoxCeleb Speaker Recognition Challenge 2021 (VoxSRC-21). We participated in the fully supervised speaker verification track 1 and track 2. In the challenge, we explored various kinds of advanced neural network structures with different pooling layers and objective loss functions. In addition, we introduced the ResNet-DTCF, CoAtNet and PyConv networks to advance the performance of CNN-based speaker embedding model. Moreover, we applied embedding normalization and score normalization at the evaluation stage. By fusing 11 and 14 systems, our final best performances (minDCF/EER) on the evaluation trails are 0.1205/2.8160% and 0.1175/2.8400% respectively for track 1 and 2. With our submission, we came to the second place in the challenge for both tracks.
94 - Keke Wang , Xudong Mao , Hao Wu 2021
This paper describes the ByteDance speaker diarization system for the fourth track of the VoxCeleb Speaker Recognition Challenge 2021 (VoxSRC-21). The VoxSRC-21 provides both the dev set and test set of VoxConverse for use in validation and a standalone test set for evaluation. We first collect the duration and signal-to-noise ratio (SNR) of all audio and find that the distribution of the VoxConverses test set and the VoxSRC-21s test set is more closer. Our system consists of voice active detection (VAD), speaker embedding extraction, spectral clustering followed by a re-clustering step based on agglomerative hierarchical clustering (AHC) and overlapped speech detection and handling. Finally, we integrate systems with different time scales using DOVER-Lap. Our best system achieves 5.15% of the diarization error rate (DER) on evaluation set, ranking the second at the diarization track of the challenge.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا