Do you want to publish a course? Click here

Self-adaptive-type CQ algorithms for split equality problems

208   0   0.0 ( 0 )
 Added by Zheng Zhou
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The purpose of this paper is concerned with the approximate solution of split equality problems. We introduce two types of algorithms and a new self-adaptive stepsize without prior knowledge of operator norms. The corresponding strong convergence theorems are obtained under mild conditions. Finally, some numerical experiments demonstrate the efficiency of our results and compare them with the existing results.



rate research

Read More

This paper is to analyze the approximation solution of a split variational inclusion problem in the framework of infinite dimensional Hilbert spaces. For this purpose, several inertial hybrid and shrinking projection algorithms are proposed under the effect of self-adaptive stepsizes which does not require information of the norms of the given operators. Some strong convergence properties of the proposed algorithms are obtained under mild constraints. Finally, an experimental application is given to illustrate the performances of proposed methods by comparing existing results.
Polynomial eigenvalue problems (PEPs) arise in a variety of science and engineering applications, and many breakthroughs in the development of classical algorithms to solve PEPs have been made in the past decades. Here we attempt to solve PEPs in a quantum computer. Firstly, for generalized eigenvalue problems (GEPs) $Ax = lambda Bx$ with $A,B$ symmetric, and $B$ positive definite, we give a quantum algorithm based on block-encoding and quantum phase estimation. In a more general case when $B$ is invertible, $B^{-1}A$ is diagonalizable and all the eigenvalues are real, we propose a quantum algorithm based on the Fourier spectral method to solve ordinary differential equations (ODEs). The inputs of our algorithms can be any desired states, and the outputs are superpositions of the eigenpairs. The complexities are polylog in the matrix size and linear in the precision. The dependence on precision is optimal. Secondly, we show that when $B$ is singular, any quantum algorithm uses at least $Omega(sqrt{n})$ queries to compute the eigenvalues, where $n$ is the matrix size. Thirdly, based on the linearization method and the connection between PEPs and higher-order ODEs, we provide two quantum algorithms to solve PEPs by extending the quantum algorithm for GEPs. We also give detailed complexity analysis of the algorithm for two special types of quadratic eigenvalue problems that are important in practice. Finally, under an extra assumption, we propose a quantum algorithm to solve PEPs when the eigenvalues are complex.
A priori, a posteriori, and mixed type upper bounds for the absolute change in Ritz values of self-adjoint matrices in terms of submajorization relations are obtained. Some of our results prove recent conjectures by Knyazev, Argentati, and Zhu, which extend several known results for one dimensional subspaces to arbitrary subspaces. In addition, we improve Nakatsukasas version of the $tan Theta$ theorem of Davis and Kahan. As a consequence, we obtain new quadratic a posteriori bounds for the absolute change in Ritz values.
The main purpose of our paper is a new approach to design of algorithms of Kaczmarz type in the framework of operators in Hilbert space. Our applications include a diverse list of optimization problems, new Karhunen-Lo`eve transforms, and Principal Component Analysis (PCA) for digital images. A key feature of our algorithms is our use of recursive systems of projection operators. Specifically, we apply our recursive projection algorithms for new computations of PCA probabilities and of variance data. For this we also make use of specific reproducing kernel Hilbert spaces, factorization for kernels, and finite-dimensional approximations. Our projection algorithms are designed with view to maximum likelihood solutions, minimization of cost problems, identification of principal components, and data-dimension reduction.
Deterministic interpolation and quadrature methods are often unsuitable to address Bayesian inverse problems depending on computationally expensive forward mathematical models. While interpolation may give precise posterior approximations, deterministic quadrature is usually unable to efficiently investigate an informative and thus concentrated likelihood. This leads to a large number of required expensive evaluations of the mathematical model. To overcome these challenges, we formulate and test a multilevel adaptive sparse Leja algorithm. At each level, adaptive sparse grid interpolation and quadrature are used to approximate the posterior and perform all quadrature operations, respectively. Specifically, our algorithm uses coarse discretizations of the underlying mathematical model to investigate the parameter space and to identify areas of high posterior probability. Adaptive sparse grid algorithms are then used to place points in these areas, and ignore other areas of small posterior probability. The points are weighted Leja points. As the model discretization is coarse, the construction of the sparse grid is computationally efficient. On this sparse grid, the posterior measure can be approximated accurately with few expensive, fine model discretizations. The efficiency of the algorithm can be enhanced further by exploiting more than two discretization levels. We apply the proposed multilevel adaptive sparse Leja algorithm in numerical experiments involving elliptic inverse problems in 2D and 3D space, in which we compare it with Markov chain Monte Carlo sampling and a standard multilevel approximation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا