Do you want to publish a course? Click here

Electrically induced strong modulation of magnons transport in ultrathin magnetic insulator films

84   0   0.0 ( 0 )
 Added by Xiangyang Wei
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnon transport through a magnetic insulator can be controlled by current-biased heavy-metal gates that modulate the magnon conductivity via the magnon density. Here, we report nonlinear modulation effects in 10$,$nm thick yttrium iron garnet (YIG) films. The modulation efficiency is larger than 40%/mA. The spin transport signal at high DC current density (2.2$times 10^{11},$A/m$^{2}$) saturates for a 400$,$nm wide Pt gate, which indicates that even at high current levels a magnetic instability cannot be reached in spite of the high magnetic quality of the films.



rate research

Read More

Quantitative understanding of the relationship between quantum tunneling and Fermi surface spin polarization is key to device design using topological insulator surface states. By using spin-resolved photoemission spectroscopy with p-polarized light in topological insulator Bi2Se3 thin films across the metal-to-insulator transition, we observe that for a given film thickness, the spin polarization is large for momenta far from the center of the surface Brillouin zone. In addition, the polarization decreases significantly with enhanced tunneling realized systematically in thin insulating films, whereas magnitude of the polarization saturates to the bulk limit faster at larger wavevectors in thicker metallic films. Our theoretical model calculations capture this delicate relationship between quantum tunneling and Fermi surface spin polarization. Our results suggest that the polarization current can be tuned to zero in thin insulating films forming the basis for a future spin-switch nano-device.
We investigate the transfer and control of nonreciprocity through magnons themselves in permalloy thin films deposited on surface oxide silicon substrate. Evidences of nonreciprocal emergence of hybridized dipole exchange magnons (spin waves) at two permalloy surfaces are provided by studying magnon transmission and asymmetry, via Brillouin light scattering measurements. The dipole dominated spin wave and exchange dominated spin wave are found to be localized near the top and bottom surfaces, respectively, and traveling along opposite directions. The nonreciprocity and the localization are intertwined and ca n be tuned by an in plane magnetic field. The effects are well explained by the magnetostatic theory and can be quantitatively reproduced by the micromagnetic simulations. Our findings provide a simple and flexible approach to nonreciprocal all magnon logi c devices with highly compatible with silicon based integrated circuit technology.
We investigate the optical properties of an ultrathin film of a topological insulator in the presence of an in-plane magnetic field. We show that due to the combination of the overlap between the surface states of the two layers and the magnetic field, the optical conductivity can show strong anisotropy. This leads to the effective optical activity of the ultrathin film by influencing the circularly polarized incident light. Intriguingly, for a range of magnetic fields, the reflected and transmitted lights exhibit elliptic character. Even for certain values almost linear polarizations are obtained, indicating that the thin film can act as a polaroid in reflection. All these features are discussed in the context of the time reversal symmetry breaking as one of key ingredients for the optical activity.
We investigate the electron transport properties of a model magnetic molecule formed by two magnetic centers whose exchange coupling can be altered with a longitudinal electric field. In general we find a negative differential conductance at low temperatures originating from the different scattering amplitudes of the singlet and triplet states. More interestingly, when the molecule is strongly coupled to the leads and the potential drop at the magnetic centers is only weakly dependent on the magnetic configuration, we find that there is a critical voltage V_C at which the current becomes independent of the temperature. This corresponds to a peak in the low temperature current noise. In such limit we demonstrate that the quadratic current fluctuations are proportional to the product between the conductance fluctuations and the temperature.
334 - Gal Shavit , Yuval Oreg 2020
Recent transport experiments in spatially modulated quasi-1D structures created on top of LaAlO$_3$/SrTiO$_3$ interfaces have revealed some interesting features, including phenomena conspicuously absent without the modulation. In this work, we focus on two of these remarkable features and provide theoretical analysis allowing their interpretation. The first one is the appearance of two-terminal conductance plateaus at rational fractions of $e^2/h$. We explain how this phenomenon, previously believed to be possible only in systems with strong repulsive interactions, can be stabilized in a system with attraction in the presence of the modulation. Using our theoretical framework we find the plateau amplitude and shape, and characterize the correlated phase which develops in the system due to the partial gap, namely a Luttinger liquid of electronic trions. The second observation is a sharp conductance dip below a conductance of $1times e^2/h$, which changes its value over a wide range when tuning the system. We theorize that it is due to resonant backscattering caused by a periodic spin-orbit field. The behavior of this dip can be reliably accounted for by considering the finite length of the electronic waveguides, as well as the interactions therein. The phenomena discussed in this work exemplify the intricate interplay of strong interactions and spatial modulations, and reveal the potential for novel strongly correlated phases of matter in systems which prominently feature both.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا