Do you want to publish a course? Click here

DSIC: Dynamic Sample-Individualized Connector for Multi-Scale Object Detection

128   0   0.0 ( 0 )
 Added by Zekun Li
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Although object detection has reached a milestone thanks to the great success of deep learning, the scale variation is still the key challenge. Integrating multi-level features is presented to alleviate the problems, like the classic Feature Pyramid Network (FPN) and its improvements. However, the specifically designed feature integration modules of these methods may not have the optimal architecture for feature fusion. Moreover, these models have fixed architectures and data flow paths, when fed with various samples. They cannot adjust and be compatible with each kind of data. To overcome the above limitations, we propose a Dynamic Sample-Individualized Connector (DSIC) for multi-scale object detection. It dynamically adjusts network connections to fit different samples. In particular, DSIC consists of two components: Intra-scale Selection Gate (ISG) and Cross-scale Selection Gate (CSG). ISG adaptively extracts multi-level features from backbone as the input of feature integration. CSG automatically activate informative data flow paths based on the multi-level features. Furthermore, these two components are both plug-and-play and can be embedded in any backbone. Experimental results demonstrate that the proposed method outperforms the state-of-the-arts.



rate research

Read More

With the continuous improvement of the performance of object detectors via advanced model architectures, imbalance problems in the training process have received more attention. It is a common paradigm in object detection frameworks to perform multi-scale detection. However, each scale is treated equally during training. In this paper, we carefully study the objective imbalance of multi-scale detector training. We argue that the loss in each scale level is neither equally important nor independent. Different from the existing solutions of setting multi-task weights, we dynamically optimize the loss weight of each scale level in the training process. Specifically, we propose an Adaptive Variance Weighting (AVW) to balance multi-scale loss according to the statistical variance. Then we develop a novel Reinforcement Learning Optimization (RLO) to decide the weighting scheme probabilistically during training. The proposed dynamic methods make better utilization of multi-scale training loss without extra computational complexity and learnable parameters for backpropagation. Experiments show that our approaches can consistently boost the performance over various baseline detectors on Pascal VOC and MS COCO benchmark.
Deep-learning based salient object detection methods achieve great progress. However, the variable scale and unknown category of salient objects are great challenges all the time. These are closely related to the utilization of multi-level and multi-scale features. In this paper, we propose the aggregate interaction modules to integrate the features from adjacent levels, in which less noise is introduced because of only using small up-/down-sampling rates. To obtain more efficient multi-scale features from the integrated features, the self-interaction modules are embedded in each decoder unit. Besides, the class imbalance issue caused by the scale variation weakens the effect of the binary cross entropy loss and results in the spatial inconsistency of the predictions. Therefore, we exploit the consistency-enhanced loss to highlight the fore-/back-ground difference and preserve the intra-class consistency. Experimental results on five benchmark datasets demonstrate that the proposed method without any post-processing performs favorably against 23 state-of-the-art approaches. The source code will be publicly available at https://github.com/lartpang/MINet.
122 - Xinshuo Weng , Kris Kitani 2020
3D multi-object tracking is an important component in robotic perception systems such as self-driving vehicles. Recent work follows a tracking-by-detection pipeline, which aims to match past tracklets with detections in the current frame. To avoid matching with false positive detections, prior work filters out detections with low confidence scores via a threshold. However, finding a proper threshold is non-trivial, which requires extensive manual search via ablation study. Also, this threshold is sensitive to many factors such as target object category so we need to re-search the threshold if these factors change. To ease this process, we propose to automatically select high-quality detections and remove the efforts needed for manual threshold search. Also, prior work often uses a single threshold per data sequence, which is sub-optimal in particular frames or for certain objects. Instead, we dynamically search threshold per frame or per object to further boost performance. Through experiments on KITTI and nuScenes, our method can filter out $45.7%$ false positives while maintaining the recall, achieving new S.O.T.A. performance and removing the need for manually threshold tuning.
Salient object detection(SOD) aims at locating the most significant object within a given image. In recent years, great progress has been made in applying SOD on many vision tasks. The depth map could provide additional spatial prior and boundary cues to boost the performance. Combining the depth information with image data obtained from standard visual cameras has been widely used in recent SOD works, however, introducing depth information in a suboptimal fusion strategy may have negative influence in the performance of SOD. In this paper, we discuss about the advantages of the so-called progressive multi-scale fusion method and propose a mask-guided feature aggregation module(MGFA). The proposed framework can effectively combine the two features of different modalities and, furthermore, alleviate the impact of erroneous depth features, which are inevitably caused by the variation of depth quality. We further introduce a mask-guided refinement module(MGRM) to complement the high-level semantic features and reduce the irrelevant features from multi-scale fusion, leading to an overall refinement of detection. Experiments on five challenging benchmarks demonstrate that the proposed method outperforms 11 state-of-the-art methods under different evaluation metrics.
Deep-learning based salient object detection methods achieve great improvements. However, there are still problems existing in the predictions, such as blurry boundary and inaccurate location, which is mainly caused by inadequate feature extraction and integration. In this paper, we propose a Multi-scale Edge-based U-shape Network (MEUN) to integrate various features at different scales to achieve better performance. To extract more useful information for boundary prediction, U-shape Edge Network modules are embedded in each decoder units. Besides, the additional down-sampling module alleviates the location inaccuracy. Experimental results on four benchmark datasets demonstrate the validity and reliability of the proposed method. Multi-scale Edge based U-shape Network also shows its superiority when compared with 15 state-of-the-art salient object detection methods.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا