Do you want to publish a course? Click here

Strongly Local Hypergraph Diffusions for Clustering and Semi-supervised Learning

183   0   0.0 ( 0 )
 Added by Meng Liu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Hypergraph-based machine learning methods are now widely recognized as important for modeling and using higher-order and multiway relationships between data objects. Local hypergraph clustering and semi-supervised learning specifically involve finding a well-connected set of nodes near a given set of labeled vertices. Although many methods for local clustering exist for graphs, there are relatively few for localized clustering in hypergraphs. Moreover, those that exist often lack flexibility to model a general class of hypergraph cut functions or cannot scale to large problems. To tackle these issues, this paper proposes a new diffusion-based hypergraph clustering algorithm that solves a quadratic hypergraph cut based objective akin to a hypergraph analog of Andersen-Chung-Lang personalized PageRank clustering for graphs. We prove that, for graphs with fixed maximum hyperedge size, this method is strongly local, meaning that its runtime only depends on the size of the output instead of the size of the hypergraph and is highly scalable. Moreover, our method enables us to compute with a wide variety of cardinality-based hypergraph cut functions. We also prove that the clusters found by solving the new objective function satisfy a Cheeger-like quality guarantee. We demonstrate that on large real-world hypergraphs our new method finds better clusters and runs much faster than existing approaches. Specifically, it runs in few seconds for hypergraphs with a few million hyperedges compared with minutes for flow-based technique. We furthermore show that our framework is general enough that can also be used to solve other p-norm based cut objectives on hypergraphs. Our code is available url{github.com/MengLiuPurdue/LHQD}.



rate research

Read More

The Mean Teacher (MT) model of Tarvainen and Valpola has shown favorable performance on several semi-supervised benchmark datasets. MT maintains a teacher models weights as the exponential moving average of a student models weights and minimizes the divergence between their probability predictions under diverse perturbations of the inputs. However, MT is known to suffer from confirmation bias, that is, reinforcing incorrect teacher model predictions. In this work, we propose a simple yet effective method called Local Clustering (LC) to mitigate the effect of confirmation bias. In MT, each data point is considered independent of other points during training; however, data points are likely to be close to each other in feature space if they share similar features. Motivated by this, we cluster data points locally by minimizing the pairwise distance between neighboring data points in feature space. Combined with a standard classification cross-entropy objective on labeled data points, the misclassified unlabeled data points are pulled towards high-density regions of their correct class with the help of their neighbors, thus improving model performance. We demonstrate on semi-supervised benchmark datasets SVHN and CIFAR-10 that adding our LC loss to MT yields significant improvements compared to MT and performance comparable to the state of the art in semi-supervised learning.
Graphs have become increasingly popular in modeling structures and interactions in a wide variety of problems during the last decade. Graph-based clustering and semi-supervised classification techniques have shown impressive performance. This paper proposes a graph learning framework to preserve both the local and global structure of data. Specifically, our method uses the self-expressiveness of samples to capture the global structure and adaptive neighbor approach to respect the local structure. Furthermore, most existing graph-based methods conduct clustering and semi-supervised classification on the graph learned from the original data matrix, which doesnt have explicit cluster structure, thus they might not achieve the optimal performance. By considering rank constraint, the achieved graph will have exactly $c$ connected components if there are $c$ clusters or classes. As a byproduct of this, graph learning and label inference are jointly and iteratively implemented in a principled way. Theoretically, we show that our model is equivalent to a combination of kernel k-means and k-means methods under certain condition. Extensive experiments on clustering and semi-supervised classification demonstrate that the proposed method outperforms other state-of-the-art methods.
Seeding then expanding is a commonly used scheme to discover overlapping communities in a network. Most seeding methods are either too complex to scale to large networks or too simple to select high-quality seeds, and the non-principled functions used by most expanding methods lead to poor performance when applied to diverse networks. This paper proposes a new method that transforms a network into a corpus where each edge is treated as a document, and all nodes of the network are treated as terms of the corpus. An effective seeding method is also proposed that selects seeds as a training set, then a principled expanding method based on semi-supervised learning is applied to classify edges. We compare our new algorithm with four other community detection algorithms on a wide range of synthetic and empirical networks. Experimental results show that the new algorithm can significantly improve clustering performance in most cases. Furthermore, the time complexity of the new algorithm is linear to the number of edges, and this low complexity makes the new algorithm scalable to large networks.
We present a novel cost function for semi-supervised learning of neural networks that encourages compact clustering of the latent space to facilitate separation. The key idea is to dynamically create a graph over embeddings of labeled and unlabeled samples of a training batch to capture underlying structure in feature space, and use label propagation to estimate its high and low density regions. We then devise a cost function based on Markov chains on the graph that regularizes the latent space to form a single compact cluster per class, while avoiding to disturb existing clusters during optimization. We evaluate our approach on three benchmarks and compare to state-of-the art with promising results. Our approach combines the benefits of graph-based regularization with efficient, inductive inference, does not require modifications to a network architecture, and can thus be easily applied to existing networks to enable an effective use of unlabeled data.
Pairwise same-cluster queries are one of the most widely used forms of supervision in semi-supervised clustering. However, it is impractical to ask human oracles to answer every query correctly. In this paper, we study the influence of allowing not-sure answers from a weak oracle and propose an effective algorithm to handle such uncertainties in query responses. Two realistic weak oracle models are considered where ambiguity in answering depends on the distance between two points. We show that a small query complexity is adequate for effective clustering with high probability by providing better pairs to the weak oracle. Experimental results on synthetic and real data show the effectiveness of our approach in overcoming supervision uncertainties and yielding high quality clusters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا