Do you want to publish a course? Click here

Single-Molecule Magnet Mn$_{12}$ on GaAs-supported Graphene: Gate Field Effects From First Principles

256   0   0.0 ( 0 )
 Added by Shuanglong Liu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study gate field effects on the Mn$_{12}$O$_{12}$(COOH)$_{16}$(H$_2$O)$_4$ | graphene | GaAs heterostructure via first-principles calculations. We find that under moderate doping levels electrons can be added to but not taken from the single-molecule magnet Mn$_{12}$O$_{12}$(COOH)$_{16}$(H$_2$O)$_4$ (Mn$_{12}$). The magnetic anisotropy energy (MAE) of Mn$_{12}$ decreases as the electron doping level increases, due to electron transfer from graphene to Mn$_{12}$ and change in the band alignment between Mn$_{12}$ and graphene. At an electron doping level of $-5.00 times 10^{13}, textrm{cm}^{-2}$, the MAE decreases by about 18% compared with zero doping. The band alignment between graphene and GaAs is more sensitive to electron doping than to hole doping since the valence band of GaAs is close to the Fermi level. The GaAs substrate induces a small bandgap in the supported graphene under the zero gate field and a nearly strain-free configuration. Finally, we propose a vertical tunnel junction for probing the gate dependence of MAE via electron transport measurements.



rate research

Read More

We report a systematic first-principles investigation of the influence of different magnetic insulators on the magnetic proximity effect induced in graphene. Four different magnetic insulators are considered: two ferromagnetic europium chalcogenides namely EuO and EuS and two ferrimagnetic insulators yttrium iron garnet (YIG) and cobalt ferrite (CFO). The obtained exchange-splitting varies from tens to hundreds of meV. We also find an electron doping induced by YIG and europium chalcogenides substrates, that shift the Fermi level up to 0.78 eV and 1.3 eV respectively, whereas hole doping up to 0.5 eV is generated by CFO. Furthermore, we study the variation of the extracted exchange and tight binding parameters as a function of the EuO and EuS thicknesses. We show that those parameters are robust to thickness variation such that a single monolayer of magnetic insulator can induce a large magnetic proximity effect on graphene. Those findings pave the way towards possible engineering of graphene spin-gating by proximity effect especially in view of recent experiments advancement.
The results of density functional theory calculations and measurements using X-ray photoelectron spectroscopy of Co-nanoparticles dispersed on graphene/Cu are presented. It is found that for low cobalt thickness (0.02 nm - 0.06 nm) the Co forms islands distributed non-homogeneously which are strongly oxidized under exposure to air to form cobalt oxides. At greater thicknesses up to 2 nm the upper Co-layers are similarly oxidized whereas the lower layers contacting the graphene remain metallic. The measurements indicate a Co2+ oxidation state with no evidence of a 3+ state appearing at any Co thickness, consistent with CoO and Co[OH]2. The results show that thicker Co (2nm) coverage induces the formation of a protective oxide layer while providing the magnetic properties of Co nanoparticles.
139 - J. W. Hong 2009
The behaviour of the cross-sectional polarization field is explored for thin nanowires of barium titanate from first-principles calculations. Topological defects of different winding numbers have been obtained, beyond the known textures in ferroelectric nanostructures. They result from the inward accommodation of the polarization patterns imposed at the surface of the wire by surface and edge effects. Close to a topological defect the polarization field orients out of the basal plane in some cases, maintaining a close to constant magnitude, whereas it virtually vanishes in other cases.
We present first-principles electronic structure calculations of Mn doped III-V semiconductors based on the local spin-density approximation (LSDA) as well as the self-interaction corrected local spin density method (SIC-LSD). We find that it is crucial to use a self-interaction free approach to properly describe the electronic ground state. The SIC-LSD calculations predict the proper electronic ground state configuration for Mn in GaAs, GaP, and GaN. Excellent quantitative agreement with experiment is found for magnetic moment and p-d exchange in (GaMn)As. These results allow us to validate commonly used models for magnetic semiconductors. Furthermore, we discuss the delicate problem of extracting binding energies of localized levels from density functional theory calculations. We propose three approaches to take into account final state effects to estimate the binding energies of the Mn-d levels in GaAs. We find good agreement between computed values and estimates from photoemisison experiments.
We have given a summary on our theoretical predictions of three kinds of topological semimetals (TSMs), namely, Dirac semimetal (DSM), Weyl semimetal (WSM) and Node-Line Semimetal (NLSM). TSMs are new states of quantum matters, which are different with topological insulators. They are characterized by the topological stability of Fermi surface, whether it encloses band crossing point, i.e., Dirac cone like energy node, or not. They are distinguished from each other by the degeneracy and momentum space distribution of the nodal points. To realize these intriguing topological quantum states is quite challenging and crucial to both fundamental science and future application. In 2012 and 2013, Na$_3$Bi and Cd$_3$As$_2$ were theoretically predicted to be DSM, respectively. Their experimental verifications in 2014 have ignited the hot and intensive studies on TSMs. The following theoretical prediction of nonmagnetic WSM in TaAs family stimulated a second wave and many experimental works have come out in this year. In 2014, a kind of three dimensional crystal of carbon has been proposed to be NLSM due to negligible spin-orbit coupling and coexistence of time-reversal and inversion symmetry. Though the final experimental confirmation of NLSM is still missing, there have been several theoretical proposals, including Cu$_3$PdN from us. In the final part, we have summarized the whole family of TSMs and their relationship.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا