Do you want to publish a course? Click here

Nonlinearity Characteristic of High Impedance Fault at Resonant Distribution Networks: Theoretical Basis to Identify the Faulty Feeder

215   0   0.0 ( 0 )
 Added by Mingjie Wei
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Feeder identification is indispensable for distribution networks to locate faults at a specific feeder, especially when measuring de-vices are insufficient for precise locations. For the high imped-ance fault (HIF), the feeder identification is much more compli-cated and related approaches are still in the early stage. This paper thoroughly and theoretically reveals the features of dif-ferent feeders when a HIF happens at the resonant grounded neutral (RGN) network, which is the most challenging condition for feeder identification. Firstly, the diversity of nonlinearity existing in HIFs is explained from the aspect of energy. Then, the differences of nonlinearities of zero-sequence currents between healthy and faulty feeders are deduced theoretically. Variations of the detuning index and damping ratio that exist in industries are both considered. Afterward, these theoretical conclusions are verified by the HIF cases experimented in a real 10kV system. Finally, based on the theories, we discuss about why the existing approaches are not reliable enough, and suggest some improve-ments.



rate research

Read More

This paper considers the problem of fault detection and localization in active distribution networks using PMUs. The proposed algorithm consists in computing a set of weighted least squares state estimates whose results are used to detect, characterize and localize the occurrence of a fault. Moreover, a criteria to minimize the number of PMUs required to correctly perform the proposed algorithm is defined. Such a criteria, based on system observability conditions, allows the design of an optimization problem to set the positions of PMUs along the grid, in order to get the desired fault localization resolution. The performances of the strategy are tested via simulations on a benchmark distribution system.
This paper discusses a novel fault location approach using single ended measurement. The natural dissipation of the circuit parameters are considered for fault location. A relationship between the damped natural frequency of oscillation of the transmission line current and fault location is established in this paper. The hybrid dc circuit breaker (dcCB) interrupts the fault current and the line current attenuates under the absence of any driving voltage source. The line capacitance discharges into the fault at a specific frequency of oscillation and rate of attenuation. Utilizing this information, the fault location in a multi-terminal direct current (MTdc) network can be predicted. A three terminal radial model of a MTdc is used for performance evaluation of the proposed method using Power System Computer Aided Design (PSCAD)/Electromagnetic Transients including dc (EMTdc).
This paper presents a method for the optimal siting and sizing of energy storage systems (ESSs) in active distribution networks (ADNs) to achieve their dispatchability. The problem formulation accounts for the uncertainty inherent to the stochastic nature of distributed energy sources and loads. Thanks to the operation of ESSs, the main optimization objective is to minimize the dispatch error, which accounts for the mismatch between the realization and prediction of the power profile at the ADN connecting point to the upper layer grid, while respecting the grid voltages and ampacity constraints. The proposed formulation relies on the so-called Augmented Relaxed Optimal Power Flow (AR-OPF) method: it expresses a convex full AC optimal power flow, which is proven to provide a global optimal and exact solution in the case of radial power grids. The AR-OPF is coupled with the proposed dispatching control resulting in a two-level optimization problem. In the first block, the site and size of the ESSs are decided along with the level of dispatchability that the ADN can achieve. Then, in the second block, the adequacy of the ESS allocations and the feasibility of the grid operating points are verified over operating scenarios using the Benders decomposition technique. Consequently, the optimal size and site of the ESSs are adjusted. To validate the proposed method, simulations are conducted on a real Swiss ADN hosting a large amount of stochastic Photovoltaic (PV) generation.
This paper addresses the use of data-driven evolving techniques applied to fault prognostics. In such problems, accurate predictions of multiple steps ahead are essential for the Remaining Useful Life (RUL) estimation of a given asset. The fault prognostics solutions must be able to model the typical nonlinear behavior of the degradation processes of these assets, and be adaptable to each units particularities. In this context, the Evolving Fuzzy Systems (EFSs) are models capable of representing such behaviors, in addition of being able to deal with non-stationary behavior, also present in these problems. Moreover, a methodology to recursively track the models estimation error is presented as a way to quantify uncertainties that are propagated in the long-term predictions. The well-established NASAs Li-ion batteries data set is used to evaluate the models. The experiments indicate that generic EFSs can take advantage of both historical and stream data to estimate the RUL and its uncertainty.
Human impedance parameters play an integral role in the dynamics of strength amplification exoskeletons. Many methods are used to estimate the stiffness of human muscles, but few are used to improve the performance of strength amplification controllers for these devices. We propose a compliance shaping amplification controller incorporating an accurate online human stiffness estimation from surface electromyography (sEMG) sensors and stretch sensors connected to the forearm and upper arm of the human. These sensor values along with exoskeleton position and velocity are used to train a random forest regression model that accurately predicts a persons stiffness despite varying movement, relaxation, and muscle co-contraction. Our models accuracy is verified using experimental test data and the model is implemented into the compliance shaping controller. Ultimately we show that the online estimation of stiffness can improve the bandwidth and amplification of the controller while remaining robustly stable.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا