Do you want to publish a course? Click here

Fault Location Using the Natural Frequency of Oscillation of Current Discharge in MTdc Networks

101   0   0.0 ( 0 )
 Added by Bhaskar Mitra
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This paper discusses a novel fault location approach using single ended measurement. The natural dissipation of the circuit parameters are considered for fault location. A relationship between the damped natural frequency of oscillation of the transmission line current and fault location is established in this paper. The hybrid dc circuit breaker (dcCB) interrupts the fault current and the line current attenuates under the absence of any driving voltage source. The line capacitance discharges into the fault at a specific frequency of oscillation and rate of attenuation. Utilizing this information, the fault location in a multi-terminal direct current (MTdc) network can be predicted. A three terminal radial model of a MTdc is used for performance evaluation of the proposed method using Power System Computer Aided Design (PSCAD)/Electromagnetic Transients including dc (EMTdc).



rate research

Read More

Location of non-stationary forced oscillation (FO) sources can be a challenging task, especially in cases under resonance condition with natural system modes, where the magnitudes of the oscillations could be greater in places far from the source. Therefore, it is of interest to construct a global time-frequency (TF) representation (TFR) of the system, which can capture the oscillatory components present in the system. In this paper we develop a systematic methodology for frequency identification and component filtering of non-stationary power system forced oscillations (FO) based on multi-channel TFR. The frequencies of the oscillatory components are identified on the TF plane by applying a modified ridge estimation algorithm. Then, filtering of the components is carried out on the TF plane applying the anti-transform functions over the individual TFRs around the identified ridges. This step constitutes an initial stage for the application of the Dissipating Energy Flow (DEF) method used to locate FO sources. Besides, we compare three TF approaches: short-time Fourier transform (STFT), STFT-based synchrosqueezing transform (FSST) and second order FSST (FSST2). Simulated signals and signals from real operation are used to show that the proposed method provides a systematic framework for identification and filtering of power systems non-stationary forced oscillations.
Efficiency and multisimultaneous-frequency (MSF) output capability are two major criteria characterizing the performance of a power amplifier in the application of multifrequency eddy current testing (MECT). Switch-mode power amplifiers are known to have a very high efficiency, yet they have rarely been adopted in the instrumental development of MECT. In addition, switch-mode power amplifiers themselves are lacking in the research literature for MSF capability. In this article, a Class D power amplifier is designed so as to address the two issues. An MSF selective harmonic elimination pulsewidth modulation method is proposed to generate alternating magnetic fields, which are rich in selected harmonics. A field-programmable-gate-array-based experimental system has been developed to verify the design. Results show that the proposed methodology is capable of generating high MSF currents in the transmitting coil with a low distortion of signal.
This paper considers the problem of fault detection and localization in active distribution networks using PMUs. The proposed algorithm consists in computing a set of weighted least squares state estimates whose results are used to detect, characterize and localize the occurrence of a fault. Moreover, a criteria to minimize the number of PMUs required to correctly perform the proposed algorithm is defined. Such a criteria, based on system observability conditions, allows the design of an optimization problem to set the positions of PMUs along the grid, in order to get the desired fault localization resolution. The performances of the strategy are tested via simulations on a benchmark distribution system.
This paper investigates how a disturbance in the power network affects the nodal frequencies of certain network buses. To begin with, we show that the inertia of a single generator is in inverse proportion to the initial rate of change of frequency (RoCoF) under disturbances. Then, we present how the initial RoCoF of the nodal frequencies are related to the inertia constants of multiple generators in a power network, which leads to a performance metric to analyze nodal frequency performance. To be specific, the proposed metric evaluates the impact of disturbances on the nodal frequency performance. The validity and effectiveness of the proposed metric are illustrated via simulations on a multi-machine power system.
In this paper, we analyze the two-node joint clock synchronization and ranging problem. We focus on the case of nodes that employ time-to-digital converters to determine the range between them precisely. This specific design choice leads to a sawtooth model for the captured signal, which has not been studied before from an estimation theoretic standpoint. In the study of this model, we recover the basic conclusion of a well-known article by Freris, Graham, and Kumar in clock synchronization. More importantly, we discover a surprising identifiability result on the sawtooth signal model: noise improves the theoretical condition of the estimation of the phase and offset parameters. To complete our study, we provide performance references for joint clock synchronization and ranging using the sawtooth signal model by presenting an exhaustive simulation study on basic estimation strategies under different realistic conditions. With our contributions in this paper, we enable further research in the estimation of sawtooth signal models and pave the path towards their industrial use for clock synchronization and ranging.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا