No Arabic abstract
RT Cru belongs to the rare class of hard X-ray emitting symbiotics, whose origin is not yet fully understood. In this work, we have conducted a detailed spectroscopic analysis of X-ray emission from RT Cru based on observations taken by the Chandra Observatory using the Low Energy Transmission Grating (LETG) on the High-Resolution Camera Spectrometer (HRC-S) in 2015 and the High Energy Transmission Grating (HETG) on the Advanced CCD Imaging Spectrometer S-array (ACIS-S) in 2005. Our thermal plasma modeling of the time-averaged HRC-S/LETG spectrum suggests a mean temperature of $kT sim 1.3$ keV, whereas $kT sim 9.6$ keV according to the time-averaged ACIS-S/HETG. The soft thermal plasma emission component ($sim1.3$ keV) found in the HRC-S is heavily obscured by dense materials ($> 5 times 10^{23}$ cm$^{-2}$). The aperiodic variability seen in its light curves could be due to changes in either absorbing material covering the hard X-ray source or intrinsic emission mechanism in the inner layers of the accretion disk. To understand the variability, we extracted the spectra in the low/hard and high/soft spectral states, which indicated higher plasma temperatures in the low/hard states of both the ACIS-S and HRC-S. The source also has a fluorescent iron emission line at 6.4 keV, likely emitted from reflection off an accretion disk or dense absorber, which was twice as bright in the HRC-S epoch compared to the ACIS-S. The soft thermal component identified in the HRC-S might be an indication of a jet that deserves further evaluations using high-resolution imaging observations.
Symbiotic stars are a heterogeneous class of interacting binaries. Among them, RT Cru has been classified as prototype of a subclass that is characterised by hard X-ray spectra extending past ~20 keV. We analyse ~8.6 Ms of archival INTEGRAL data collected in the period 2003-2014, ~140 ks of Swift/XRT data, and a Suzaku observation of 39 ks, to study the spectral X-ray emission and investigate the nature of the compact object. Based on the 2MASS photometry, we estimate the distance to the source of 1.2-2.4 kpc. The X-ray spectrum obtained with Swift/XRT, JEM-X, IBIS/ISGRI, and Suzaku data is well fitted by a cooling flow model modified by an absorber that fully covers the source and two partial covering absorbers. Assuming that the hard X-ray emission of RT Cru originates from an optically thin boundary layer around a non-magnetic white dwarf, we estimated a mass of the WD of about 1.2 M_Sun. The mass accretion rate obtained for this source might be too high for the optically thin boundary layer scenario. Therefore we investigate other plausible scenarios to model its hard X-ray emission. We show that, alternatively, the observed X-ray spectrum can be explained with the X-ray emission from the post-shock region above the polar caps of a magnetised white dwarf with mass ~0.9-1.1 M_Sun.
We present the results of our monitoring program to study the long-term variability of the Halpha line in high-mass X-ray binaries. We have carried out the most complete optical spectroscopic study of the global properties of high-mass X-ray binaries so far with the analysis of more than 1100 spectra of 20 sources. Our aim is to characterise the optical variability timescales and study the interaction between the neutron star and the accreting material. Our results can be summarised as follows: i) we find that Be/X-ray binaries with narrow orbits are more variable than systems with long orbital periods, ii) we show that a Keplerian distribution of the gas particles provides a good description of the disks in Be/X-ray binaries, as it does in classical Be stars, iii) a decrease in the Halpha equivalent width is generally observed after major X-ray outbursts, iv) we confirm that the Halpha equivalent width correlates with disk radius, v) while systems with supergiant companions display, multi-structured profiles, most of the Be/X-ray binaries show at some epoch double-peak asymmetric profiles, indicating that density inhomogeneities is a common property in the disk of Be/X-ray binaries, vi) the profile variability (V/R ratio) timescales are shorter and the Halpha equivalent width are smaller in Be/X-ray binaries than in isolated Be stars, and vii) we provide new evidence that the disk in Be/X-ray binaries is on average denser than in classical Be stars.
We present photometric observations of the field around the optical counterparts of high-mass X-ray binaries. Our aim is to study the long-term photometric variability in correlation with their X-ray activity and derive a set of secondary standard stars that can be used for time series analysis. We find that the donors in Be/X-ray binaries exhibit larger amplitude changes in the magnitudes and colours than those hosting a supergiant companion. The amplitude of variability increases with wavelength in Be/X-ray binaries and remains fairly constant in supergiant systems. When time scales of years are considered, a good correlation between the X-ray and optical variability is observed. The X-rays cease when optical brightness decreases. These results reflect the fact that the circumstellar disk in Be/X-ray binaries is the main source of both optical and X-ray variability. We also derive the colour excess, E(B-V), selecting data at times when the contribution of the circumstellar disk was supposed to be at minimum, and we revisit the distance estimates.
Compared to mass transfer in cataclysmic variables, the nature of accretion in symbiotic binaries in which red giants transfer material to white dwarfs (WDs) has been difficult to uncover. The accretion flows in a symbiotic binary are most clearly observable, however, when there is no quasi-steady shell burning on the WD to hide them. RT Cru is the prototype of such non-burning symbiotics, with its hard ({delta}-type) X-ray emission providing a view of its innermost accretion structures. In the past 20 yr, RT Cru has experienced two similar optical brightening events, separated by 4000 days and with amplitudes of {Delta}V 1.5 mag. After Swift became operative, the Burst Alert Telescope (BAT) detector revealed a hard X-ray brightening event almost in coincidence with the second optical peak. Spectral and timing analyses of multi-wavelength observations that we describe here, from NuSTAR, Suzaku, Swift/X-Ray Telescope (XRT) + BAT + UltraViolet Optical Telescope (UVOT) (photometry) and optical photometry and spectroscopy, indicate that accretion proceeds through a disk that reaches down to the WD surface. The scenario in which a massive, magnetic WD accretes from a magnetically truncated accretion disk is not supported. For example, none of our data show the minute-time-scale periodic modulations (with tight upper limits from X-ray data) expected from a spinning, magnetic WD. Moreover, the similarity of the UV and X-ray fluxes, as well as the approximate constancy of the hardness ratio within the BAT band, indicate that the boundary layer of the accretion disk remained optically thin to its own radiation throughout the brightening event, during which the rate of accretion onto the WD increased to 6.7 $times$ 10-9 Msun yr^{-1} (d/2 kpc)^2. (Abridged abstract version)
Binary systems with an accreting compact object are a unique chance to investigate the strong, clumpy, line-driven winds of early type supergiants by using the compact objects X-rays to probe the wind structure. We analyze the two-component wind of HDE 226868, the O9.7Iab giant companion of the black hole Cyg X-1 using 4.77 Ms of RXTE observations of the system taken over the course of 16 years. Absorption changes strongly over the 5.6 d binary orbit, but also shows a large scatter at a given orbital phase, especially at superior conjunction. The orbital variability is most prominent when the black hole is in the hard X-ray state. Our data are poorer for the intermediate and soft state, but show signs for orbital variability of the absorption column in the intermediate state. We quantitatively compare the data in the hard state to a toy model of a focussed Castor-Abbott-Klein-wind: as it does not incorporate clumping, the model does not describe the observations well. A qualitative comparison to a simplified simulation of clumpy winds with spherical clumps shows good agreement in the distribution of the equivalent hydrogen column density for models with a porosity length on the order of the stellar radius at inferior conjunction; we conjecture that the deviations between data and model at superior conjunction could be either due to lack of a focussed wind component in the model or a more complicated clump structure.