Do you want to publish a course? Click here

Representing Deep Neural Networks Latent Space Geometries with Graphs

267   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Deep Learning (DL) has attracted a lot of attention for its ability to reach state-of-the-art performance in many machine learning tasks. The core principle of DL methods consists in training composite architectures in an end-to-end fashion, where inputs are associated with outputs trained to optimize an objective function. Because of their compositional nature, DL architectures naturally exhibit several intermediate representations of the inputs, which belong to so-called latent spaces. When treated individually, these intermediate representations are most of the time unconstrained during the learning process, as it is unclear which properties should be favored. However, when processing a batch of inputs concurrently, the corresponding set of intermediate representations exhibit relations (what we call a geometry) on which desired properties can be sought. In this work, we show that it is possible to introduce constraints on these latent geometries to address various problems. In more details, we propose to represent geometries by constructing similarity graphs from the intermediate representations obtained when processing a batch of inputs. By constraining these Latent Geometry Graphs (LGGs), we address the three following problems: i) Reproducing the behavior of a teacher architecture is achieved by mimicking its geometry, ii) Designing efficient embeddings for classification is achieved by targeting specific geometries, and iii) Robustness to deviations on inputs is achieved via enforcing smooth variation of geometry between consecutive latent spaces. Using standard vision benchmarks, we demonstrate the ability of the proposed geometry-based methods in solving the considered problems.



rate research

Read More

Solutions of evolution equation generally lies in certain Bochner-Sobolev spaces, in which the solution may has regularity and integrability properties for the time variable that can be different for the space variables. Therefore, in this paper, we develop a framework shows that deep neural networks can approximate Sobolev-regular functions with respect to Bochner-Sobolev spaces. In our work we use the so-called Rectified Cubic Unit (ReCU) as an activation function in our networks, which allows us to deduce approximation results of the neural networks while avoiding issues caused by the non regularity of the most commonly used Rectivied Linear Unit (ReLU) activation function.
Recent work has proposed the concept of backdoor attacks on deep neural networks (DNNs), where misbehaviors are hidden inside normal models, only to be triggered by very specific inputs. In practice, however, these attacks are difficult to perform and highly constrained by sharing of models through transfer learning. Adversaries have a small window during which they must compromise the student model before it is deployed. In this paper, we describe a significantly more powerful variant of the backdoor attack, latent backdoors, where hidden rules can be embedded in a single Teacher model, and automatically inherited by all Student models through the transfer learning process. We show that latent backdoors can be quite effective in a variety of application contexts, and validate its practicality through real-world attacks against traffic sign recognition, iris identification of lab volunteers, and facial recognition of public figures (politicians). Finally, we evaluate 4 potential defenses, and find that only one is effective in disrupting latent backdoors, but might incur a cost in classification accuracy as tradeoff.
Collider bias is a harmful form of sample selection bias that neural networks are ill-equipped to handle. This bias manifests itself when the underlying causal signal is strongly correlated with other confounding signals due to the training data collection procedure. In the situation where the confounding signal is easy-to-learn, deep neural networks will latch onto this and the resulting model will generalise poorly to in-the-wild test scenarios. We argue herein that the cause of failure is a combination of the deep structure of neural networks and the greedy gradient-driven learning process used - one that prefers easy-to-compute signals when available. We show it is possible to mitigate against this by generating bias-decoupled training data using latent adversarial debiasing (LAD), even when the confounding signal is present in 100% of the training data. By training neural networks on these adversarial examples,we can improve their generalisation in collider bias settings. Experiments show state-of-the-art performance of LAD in label-free debiasing with gains of 76.12% on background coloured MNIST, 35.47% on fore-ground coloured MNIST, and 8.27% on corrupted CIFAR-10.
81 - Jin Huang , Ming Xiao 2021
The recurrent neural networks (RNN) with richly distributed internal states and flexible non-linear transition functions, have overtaken the dynamic Bayesian networks such as the hidden Markov models (HMMs) in the task of modeling highly structured sequential data. These data, such as from speech and handwriting, often contain complex relationships between the underlaying variational factors and the observed data. The standard RNN model has very limited randomness or variability in its structure, coming from the output conditional probability model. This paper will present different ways of using high level latent random variables in RNN to model the variability in the sequential data, and the training method of such RNN model under the VAE (Variational Autoencoder) principle. We will explore possible ways of using adversarial method to train a variational RNN model. Contrary to competing approaches, our approach has theoretical optimum in the model training and provides better model training stability. Our approach also improves the posterior approximation in the variational inference network by a separated adversarial training step. Numerical results simulated from TIMIT speech data show that reconstruction loss and evidence lower bound converge to the same level and adversarial training loss converges to 0.
Recent advances in deep learning have made available large, powerful convolutional neural networks (CNN) with state-of-the-art performance in several real-world applications. Unfortunately, these large-sized models have millions of parameters, thus they are not deployable on resource-limited platforms (e.g. where RAM is limited). Compression of CNNs thereby becomes a critical problem to achieve memory-efficient and possibly computationally faster model representations. In this paper, we investigate the impact of lossy compression of CNNs by weight pruning and quantization, and lossless weight matrix representations based on source coding. We tested several combinations of these techniques on four benchmark datasets for classification and regression problems, achieving compression rates up to $165$ times, while preserving or improving the model performance.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا