No Arabic abstract
Planetesimals are compact astrophysical objects roughly 1-1000 km in size, massive enough to be held together by gravity. They can grow by accreting material to become full-size planets. Planetesimals themselves are thought to form by complex physical processes from small grains in protoplanetary disks. The streaming instability (SI) model states that mm/cm-size particles (pebbles) are aerodynamically collected into self-gravitating clouds which then directly collapse into planetesimals. Here we analyze ATHENA simulations of the SI to characterize the initial properties (e.g., rotation) of pebble clouds. Their gravitational collapse is followed with the PKDGRAV N-body code, which has been modified to realistically account for pebble collisions. We find that pebble clouds rapidly collapse into short-lived disk structures from which planetesimals form. The planetesimal properties depend on the clouds scaled angular momentum, l=L/(M R_H^2 Omega, where L and M are the angular momentum and mass, R_H is the Hill radius, and Omega is the orbital frequency. Low-l pebble clouds produce tight (or contact) binaries and single planetesimals. Compact high-l clouds give birth to binary planetesimals with attributes that closely resemble the equal-size binaries found in the Kuiper belt. Significantly, the SI-triggered gravitational collapse can explain the angular momentum distribution of known equal-size binaries -- a result pending verification from studies with improved resolution. About 10% of collapse simulations produce hierarchical systems with two or more large moons. These systems should be found in the Kuiper belt when observations reach the threshold sensitivity.
We propose an expression for a local planetesimal formation rate proportional to the instantaneous radial pebble flux. The result --- a radial planetesimal distribution --- can be used as initial condition to study the formation of planetary embryos. We follow the idea that one needs particle traps to locally enhance the dust-to-gas ratio sufficiently such that particle gas interactions can no longer prevent planetesimal formation on small scales. The location of these traps can emerge everywhere in the disk. Their occurrence and lifetime is subject of ongoing research, thus they are implemented via free parameters. This enables us to study the influence of the disk properties on the formation of planetesimals, predicting their time dependent formation rates and location of primary pebble accretion. We show that large $alpha$-values of $0.01$ (strong turbulence) prevent the formation of planetesimals in the inner part of the disk, arguing for lower values of around $0.001$ (moderate turbulence), at which planetesimals form quickly at all places where they are needed for proto-planets. Planetesimals form as soon as dust has grown to pebbles ($simmathrm{mm}$ to $mathrm{dm}$) and the pebble flux reaches a critical value, which is after a few thousand years at $2-3,$AU and after a few hundred thousand years at $20-30,$AU. Planetesimal formation lasts until the pebble supply has decreased below a critical value. The final spatial planetesimal distribution is steeper compared to the initial dust and gas distribution which helps to explain the discrepancy between the minimum mass solar nebula and viscous accretion disks.
Forming gas giant planets by the accretion of 100 km diameter planetesimals, a typical size that results from self-gravity assisted planetesimal formation, is often thought to be inefficient. Many models therefore use small km-sized planetesimals, or invoke the accretion of pebbles. Furthermore, models based on planetesimal accretion often use the ad hoc assumption of planetesimals distributed radially in a minimum mass solar nebula fashion. We wish to investigate the impact of various initial radial density distributions in planetesimals with a dynamical model for the formation of planetesimals on the resulting population of planets. In doing so, we highlight the directive role of the early stages of dust evolution into pebbles and planetesimals in the circumstellar disk on the following planetary formation. We have implemented a two population model for solid evolution and a pebble flux regulated model for planetesimal formation into our global model for planet population synthesis. This framework is used to study the global effect of planetesimal formation on planet formation. As reference, we compare our dynamically formed planetesimal surface densities with ad-hoc set distributions of different radial density slopes of planetesimals. Even though required, it is not solely the total planetesimal disk mass, but the planetesimal surface density slope and subsequently the formation mechanism of planetesimals, that enables planetary growth via planetesimal accretion. Highly condensed regions of only 100 km sized planetesimals in the inner regions of circumstellar disks can lead to gas giant growth. Pebble flux regulated planetesimal formation strongly boosts planet formation, because it is a highly effective mechanism to create a steep planetesimal density profile. We find this to lead to the formation of giant planets inside 1 au by 100 km already by pure planetesimal accretion.
Comets are remnants of the icy planetesimals that formed beyond the ice line in the Solar Nebula. Growing from micrometre-sized dust and ice particles to km-sized objects is, however, difficult because of growth barriers and time scale constraints. The gravitational collapse of pebble clouds that formed through the streaming instability may provide a suitable mechanism for comet formation. We study the collisional compression of cm-sized porous ice/dust-mixed pebbles in collapsing pebble clouds. For this, we developed a collision model for pebbles consisting of a mixture of ice and dust, characterised by their dust-to-ice mass ratio. Using the final compression of the pebbles, we constrain combinations of initial cloud mass, initial pepple porosity, and dust-to-ice ratio that lead to cometesimals which are consistent with observed bulk properties of cometary nuclei. We find that observed high porosity and low density of ~0.5 g/cc of comet nuclei can only be explained if comets formed in clouds with mass approximately M>1e18 g. Lower mass clouds would only work if the pebbles were initially very compact. Furthermore, the dust-to-ice ratio must be in the range of between 3 and 9 to match the observed bulk properties of comet nuclei. (abridged version)
Many massive objects have been found in the outer region of the Solar system. How they were formed and evolved has not been well understood, although there have been intensive studies on accretion process of terrestrial planets. One of the mysteries is the existence of binary planetesimals with near-equal mass components and highly eccentric orbits. These binary planetesimals are quite different from the satellites observed in the asteroid belt region. The ratio of the Hill radius to the physical radius of the planetesimals is much larger for the outer region of the disk, compared to the inner region of the disk. The Hill radius increases with the semi major axis. Therefore, planetesimals in the outer region can form close and eccentric binaries, while those in the inner region would simply collide. In this paper, we carried out $N$-body simulations in different regions of the disk and studied if binaries form in the outer region of the disk. We found that large planetesimals tend to form binaries. A significant fraction of large planetesimals are components of the binaries. Planetesimals that become the components of binaries eventually collide with a third body, through three-body encounters. Thus, the existence of binaries can enhance the growth rate of planetesimals in the Trans-Neptunian Object (TNO) region.
We study the collisional evolution of km-sized planetesimals in tight binary star systems to investigate whether accretion towards protoplanets can proceed despite the strong gravitational perturbations from the secondary star. The orbits of planetesimals are numerically integrated in two dimensions under the influence of the two stars and gas drag. The masses and orbits of the planetesimals are allowed to evolve due to collisions with other planetesimals and accretion of collisional debris. In addition, the mass in debris can evolve due to planetesimal-planetesimal collisions and the creation of new planetesimals. We show that it is possible in principle for km-sized planetesimals to grow by two orders of magnitude in size if the efficiency of planetesimal formation is relatively low. We discuss the limitations of our two-dimensional approach.