No Arabic abstract
We consider the eikonal phase associated with the gravitational scattering of a highly energetic light particle off a very heavy object in AdS spacetime. A simple expression for this phase follows from the WKB approximation to the scattering amplitude and has been computed to all orders in the ratio of the impact parameter to the Schwarzschild radius of the heavy particle. The eikonal phase is related to the deflection angle by the usual stationary phase relation. We consider the flat space limit and observe that for sufficiently small impact parameters (or angular momenta) the eikonal phase develops a large imaginary part; the inelastic cross-section is exactly the classical absorption cross-section of the black hole. We also consider a double scaling limit where the momentum becomes null simultaneously with the asymptotically AdS black hole becoming very large. In the dual CFT this limit retains contributions from all leading twist multi stress tensor operators, which are universal with respect to the addition of higher derivative terms to the gravitational lagrangian. We compute the eikonal phase and the associated Lyapunov exponent in the double scaling limit.
We explore the eikonal approximation to graviton exchange in AdS_5 space, as relevant to scattering in gauge theories. We restrict ourselves to the regime where conformal invariance of the dual gauge theory holds, and to large t Hooft coupling where the computation involves pure gravity. We give a heuristic argument, a direct loop computation, and a shock wave derivation. The scalar propagator in AdS_3 plays a key role, indicating that even at strong coupling, two-dimensional conformal invariance controls high-energy four-dimensional gauge-theory scattering.
The eikonal phase which determines the Regge limit of the gravitational scattering amplitude of a light particle off a heavy one in Minkowski spacetimes admits an expansion in the ratio of the Schwarzschild radius of the heavy particle to the impact parameter. Such an eikonal phase in AdS spacetimes of any dimensionality has been computed to all orders and reduces to the corresponding Minkowski result when both the impact parameter and the Schwarzschild radius are much smaller than the AdS radius. The leading term in the AdS eikonal phase can be reproduced in the dual CFT by a single stress tensor conformal block, but the subleading term is a result of an infinite sum of the double stress tensor contributions. We provide a closed form expression for the OPE coefficients of the leading twist double stress tensors in four spacetime dimensions and perform the sum to compute the corresponding lightcone behavior of a heavy-heavy-light-light CFT correlator. The resulting compact expression passes a few nontrivial independent checks. In particular, it agrees with the subleading eikonal phase at large impact parameter.
We provide the metric, the gravitino fields and the gauge fields to all orders in the fermionic zero modes for D=5 and D=4, N=2 gauged supergravity solutions starting from non-extremal AdS--Schwarzschild black holes. We compute the Brown-York stress--energy tensor on the boundary of AdS_5 / AdS_4 spaces and we discuss some implications of the fermionic corrections to perfect fluid interpretation of the boundary theory. The complete non-linear solution, which we denote as fermionic wig, is achieved by acting with supersymmetry transformations upon the supergravity fields and that expansion naturally truncates at some order in the fermionic zero modes.
We study the proposal by Bredberg et al. (1006.1902), where the fluid is defined by the Brown-York tensor on a timelike surface at r=r_c in black hole backgrounds. We consider both Rindler space and the Schwarzschild-AdS (SAdS) black hole. The former describes an incompressible fluid, whereas the latter describes the vanishing bulk viscosity at arbitrary r_c, but these two results do not contradict with each other. We also find an interesting coincidence with the black hole membrane paradigm which gives a negative bulk viscosity. In order to show these results, we rewrite the hydrodynamic stress tensor via metric perturbations using the conservation equation. The resulting expressions are suitable to compare with the Brown-York tensor.
We study the thermodynamics of AdS-Schwarzschild black hole in the presence of an external string cloud. We observe that, at any temperature, the black hole configuration is stable with non-zero entropy. We further notice that, when the value of the curvature constant equals to one, if the string cloud density has less than a critical value, within a certain range of temperature three black holes configuration exist. One of these black holes is unstable and other two are stable. At a critical temperature, a transition between these two stable black holes takes place which leads us to conclude that the bound state of quark and anti-quark pairs may not exist. By studying the corresponding dual gauge theory we confirm that the instability of the bound state of quark and anti-quark pair in the dual gauge theory.