Do you want to publish a course? Click here

Profilometry and stress analysis of suspended nanostructured thin films

66   0   0.0 ( 0 )
 Added by Aurelien Dantan
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The profile of suspended silicon nitride thin films patterned with one-dimensional subwavelength grating structures is investigated using Atomic Force Microscopy. We first show that the results of the profilometry can be used as input to Rigorous Coupled Wave Analysis simulations to predict the transmission spectrum of the gratings under illumination by monochromatic light at normal incidence and compare the results of the simulations with experiments. Secondly, we observe sharp vertical deflections of the films at the boundaries of the patterned area due to local modifications of the tensile stress during the patterning process. These deflections are experimentally observed for various grating structures and investigated on the basis of a simple analytical model as well as finite element method simulations.



rate research

Read More

We report on the realization of silicon nitride membranes with enhanced and electrically tunable reflectivity. A subwavelength one-dimensional grating is directly patterned on a suspended 200 nm-thick, high stress commercial film using electron beam lithography. A Fano resonance is observed in the transmission spectrum of TM polarized light impinging on the membrane at normal incidence, leading to an increase in its reflectivity from 10% to 78% at 937 nm. The observed spectrum is compared to the results of rigorous coupled wave analysis simulations based on measurements of the grating transverse profile through localized cuts of the suspended film with a Focused Ion Beam. By mounting the membrane chip on a ring piezoelectric transducer and applying a compressive force to the substrate we subsequently observe a shift of the transmission spectrum by 0.23 nm.
Recently, a logarithmic decrease of conductivity has been observed in topological insulators at low temperatures, implying a tendency of localization of surface electrons. Here, we report quantum transport experiments on the topological insulator Bi2Te3 thin films with arrayed antidot nanostructures. With increasing density of the antidots, a systematic decrease is observed in the slope of the logarithmic temperature-dependent conductivity curves, indicating the electron-electron interaction can be tuned by the antidots. Meanwhile, the weak anti-localization effect revealed in magnetoconductivity exhibits an enhanced dominance of electron-electron interaction among decoherence mechanisms. The observation can be understood from an antidot-induced reduction of the effective dielectric constant, which controls the interactions between the surface electrons. Our results clarify the indispensable role of the electron-electron interaction in the localization of surface electrons and indicate the localization of surface electrons in an interacting topological insulator.
With a reduction in the average grain size in nanostructured films of elemental Nb, we observe a systematic crossover from metallic to weakly-insulating behavior. An analysis of the temperature dependence of the resistivity in the insulating phase clearly indicates the existence of two distinct activation energies corresponding to inter-granular and intra-granular mechanisms of transport. While the high temperature behavior is dominated by grain boundary scattering of the conduction electrons, the effect of discretization of energy levels due to quantum confinement shows up at low temperatures. We show that the energy barrier at the grain boundary is proportional to the width of the largely disordered inter-granular region, which increases with a decrease in the grain size. For a metal-insulator transition to occur in nano-Nb due to the opening up of an energy gap at the grain boundary, the critical grain size is ~ 8nm and the corresponding grain boundary width is ~ 1.1nm.
103 - N. I. Cade , T. Ritman-Meer , 2009
We report on the resonant coupling between localized surface plasmon resonances (LSPRs) in nanostructured Ag films, and an adsorbed monolayer of Rhodamine 6G dye. Hybridization of the plasmons and molecular excitons creates new coupled polaritonic modes, which have been tuned by varying the LSPR wavelength. The resulting polariton dispersion curve shows an anticrossing behavior which is very well fit by a simple coupled-oscillator Hamiltonian, giving a giant Rabi-splitting energy of ~400 meV. The strength of this coupling is shown to be proportional to the square root of the molecular density. The Raman spectra of R6G on these films show an enhancement of many orders of magnitude due to surface enhanced scattering mechanisms; we find a maximum signal when a polariton mode lies in the middle of the Stokes shifted emission band.
We report a direct observation of segregation of gold atoms to the near surface regime due to 1.5 MeV Au2+ ion impact on isolated gold nanostructures deposited on silicon. Irradiation at fluences of 6x10^13, 1x10^14 and 5x10^14 ions cm-2 at a high beam flux of 6.3x1012 ions cm-2 s-1 show a maximum transported distance of gold atoms into the silicon substrate to be 60, 45 and 23 nm, respectively. At a lower fluence (6x1013 ions cm-2) transport has been found to be associated with the formation of gold silicide (Au5Si2). At a high fluence value of 5x10^14 ions cm-2, disassociation of gold silicide and out-diffusion lead to segregation of gold to defect - rich surface and interface region.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا