Do you want to publish a course? Click here

ROLL: Visual Self-Supervised Reinforcement Learning with Object Reasoning

219   0   0.0 ( 0 )
 Added by Yufei Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Current image-based reinforcement learning (RL) algorithms typically operate on the whole image without performing object-level reasoning. This leads to inefficient goal sampling and ineffective reward functions. In this paper, we improve upon previous visual self-supervised RL by incorporating object-level reasoning and occlusion reasoning. Specifically, we use unknown object segmentation to ignore distractors in the scene for better reward computation and goal generation; we further enable occlusion reasoning by employing a novel auxiliary loss and training scheme. We demonstrate that our proposed algorithm, ROLL (Reinforcement learning with Object Level Learning), learns dramatically faster and achieves better final performance compared with previous methods in several simulated visual control tasks. Project video and code are available at https://sites.google.com/andrew.cmu.edu/roll.

rate research

Read More

To successfully tackle challenging manipulation tasks, autonomous agents must learn a diverse set of skills and how to combine them. Recently, self-supervised agents that set their own abstract goals by exploiting the discovered structure in the environment were shown to perform well on many different tasks. In particular, some of them were applied to learn basic manipulation skills in compositional multi-object environments. However, these methods learn skills without taking the dependencies between objects into account. Thus, the learned skills are difficult to combine in realistic environments. We propose a novel self-supervised agent that estimates relations between environment components and uses them to independently control different parts of the environment state. In addition, the estimated relations between objects can be used to decompose a complex goal into a compatible sequence of subgoals. We show that, by using this framework, an agent can efficiently and automatically learn manipulation tasks in multi-object environments with different relations between objects.
In self-supervised learning, a system is tasked with achieving a surrogate objective by defining alternative targets on a set of unlabeled data. The aim is to build useful representations that can be used in downstream tasks, without costly manual annotation. In this work, we propose a novel self-supervised formulation of relational reasoning that allows a learner to bootstrap a signal from information implicit in unlabeled data. Training a relation head to discriminate how entities relate to themselves (intra-reasoning) and other entities (inter-reasoning), results in rich and descriptive representations in the underlying neural network backbone, which can be used in downstream tasks such as classification and image retrieval. We evaluate the proposed method following a rigorous experimental procedure, using standard datasets, protocols, and backbones. Self-supervised relational reasoning outperforms the best competitor in all conditions by an average 14% in accuracy, and the most recent state-of-the-art model by 3%. We link the effectiveness of the method to the maximization of a Bernoulli log-likelihood, which can be considered as a proxy for maximizing the mutual information, resulting in a more efficient objective with respect to the commonly used contrastive losses.
Reinforcement learning (RL) is a powerful framework for learning to take actions to solve tasks. However, in many settings, an agent must winnow down the inconceivably large space of all possible tasks to the single task that it is currently being asked to solve. Can we instead constrain the space of tasks to those that are semantically meaningful? In this work, we introduce a framework for using weak supervision to automatically disentangle this semantically meaningful subspace of tasks from the enormous space of nonsensical chaff tasks. We show that this learned subspace enables efficient exploration and provides a representation that captures distance between states. On a variety of challenging, vision-based continuous control problems, our approach leads to substantial performance gains, particularly as the complexity of the environment grows.
In vision-based reinforcement learning (RL) tasks, it is prevalent to assign the auxiliary task with a surrogate self-supervised loss so as to obtain more semantic representations and improve sample efficiency. However, abundant information in self-supervised auxiliary tasks has been disregarded, since the representation learning part and the decision-making part are separated. To sufficiently utilize information in the auxiliary task, we present a simple yet effective idea to employ self-supervised loss as an intrinsic reward, called Intrinsically Motivated Self-Supervised learning in Reinforcement learning (IM-SSR). We formally show that the self-supervised loss can be decomposed as exploration for novel states and robustness improvement from nuisance elimination. IM-SSR can be effortlessly plugged into any reinforcement learning with self-supervised auxiliary objectives with nearly no additional cost. Combined with IM-SSR, the previous underlying algorithms achieve salient improvements on both sample efficiency and generalization in various vision-based robotics tasks from the DeepMind Control Suite, especially when the reward signal is sparse.
We present a novel self-supervised algorithm named MotionHint for monocular visual odometry (VO) that takes motion constraints into account. A key aspect of our approach is to use an appropriate motion model that can help existing self-supervised monocular VO (SSM-VO) algorithms to overcome issues related to the local minima within their self-supervised loss functions. The motion model is expressed with a neural network named PPnet. It is trained to coarsely predict the next pose of the camera and the uncertainty of this prediction. Our self-supervised approach combines the original loss and the motion loss, which is the weighted difference between the prediction and the generated ego-motion. Taking two existing SSM-VO systems as our baseline, we evaluate our MotionHint algorithm on the standard KITTI benchmark. Experimental results show that our MotionHint algorithm can be easily applied to existing open-sourced state-of-the-art SSM-VO systems to greatly improve the performance by reducing the resulting ATE by up to 28.73%.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا