No Arabic abstract
We introduce doc2dial, a new dataset of goal-oriented dialogues that are grounded in the associated documents. Inspired by how the authors compose documents for guiding end users, we first construct dialogue flows based on the content elements that corresponds to higher-level relations across text sections as well as lower-level relations between discourse units within a section. Then we present these dialogue flows to crowd contributors to create conversational utterances. The dataset includes about 4800 annotated conversations with an average of 14 turns that are grounded in over 480 documents from four domains. Compared to the prior document-grounded dialogue datasets, this dataset covers a variety of dialogue scenes in information-seeking conversations. For evaluating the versatility of the dataset, we introduce multiple dialogue modeling tasks and present baseline approaches.
Prior approaches to realizing mixed-initiative human--computer referential communication have adopted information-state or collaborative problem-solving approaches. In this paper, we argue for a new approach, inspired by coherence-based models of discourse such as SDRT cite{asher-lascarides:2003a}, in which utterances attach to an evolving discourse structure and the associated knowledge graph of speaker commitments serves as an interface to real-world reasoning and conversational strategy. As first steps towards implementing the approach, we describe a simple dialogue system in a referential communication domain that accumulates constraints across discourse, interprets them using a learned probabilistic model, and plans clarification using reinforcement learning.
Most existing approaches for goal-oriented dialogue policy learning used reinforcement learning, which focuses on the target agent policy and simply treat the opposite agent policy as part of the environment. While in real-world scenarios, the behavior of an opposite agent often exhibits certain patterns or underlies hidden policies, which can be inferred and utilized by the target agent to facilitate its own decision making. This strategy is common in human mental simulation by first imaging a specific action and the probable results before really acting it. We therefore propose an opposite behavior aware framework for policy learning in goal-oriented dialogues. We estimate the opposite agents policy from its behavior and use this estimation to improve the target agent by regarding it as part of the target policy. We evaluate our model on both cooperative and competitive dialogue tasks, showing superior performance over state-of-the-art baselines.
This paper presents the Frames dataset (Frames is available at http://datasets.maluuba.com/Frames), a corpus of 1369 human-human dialogues with an average of 15 turns per dialogue. We developed this dataset to study the role of memory in goal-oriented dialogue systems. Based on Frames, we introduce a task called frame tracking, which extends state tracking to a setting where several states are tracked simultaneously. We propose a baseline model for this task. We show that Frames can also be used to study memory in dialogue management and information presentation through natural language generation.
Task-oriented dialogue (ToD) benchmarks provide an important avenue to measure progress and develop better conversational agents. However, existing datasets for end-to-end ToD modeling are limited to a single language, hindering the development of robust end-to-end ToD systems for multilingual countries and regions. Here we introduce BiToD, the first bilingual multi-domain dataset for end-to-end task-oriented dialogue modeling. BiToD contains over 7k multi-domain dialogues (144k utterances) with a large and realistic bilingual knowledge base. It serves as an effective benchmark for evaluating bilingual ToD systems and cross-lingual transfer learning approaches. We provide state-of-the-art baselines under three evaluation settings (monolingual, bilingual, and cross-lingual). The analysis of our baselines in different settings highlights 1) the effectiveness of training a bilingual ToD system compared to two independent monolingual ToD systems, and 2) the potential of leveraging a bilingual knowledge base and cross-lingual transfer learning to improve the system performance under low resource condition.
With the advent of conversational assistants, like Amazon Alexa, Google Now, etc., dialogue systems are gaining a lot of traction, especially in industrial setting. These systems typically consist of Spoken Language understanding component which, in turn, consists of two tasks - Intent Classification (IC) and Slot Labeling (SL). Generally, these two tasks are modeled together jointly to achieve best performance. However, this joint modeling adds to model obfuscation. In this work, we first design framework for a modularization of joint IC-SL task to enhance architecture transparency. Then, we explore a number of self-attention, convolutional, and recurrent models, contributing a large-scale analysis of modeling paradigms for IC+SL across two datasets. Finally, using this framework, we propose a class of label-recurrent models that otherwise non-recurrent, with a 10-dimensional representation of the label history, and show that our proposed systems are easy to interpret, highly accurate (achieving over 30% error reduction in SL over the state-of-the-art on the Snips dataset), as well as fast, at 2x the inference and 2/3 to 1/2 the training time of comparable recurrent models, thus giving an edge in critical real-world systems.