No Arabic abstract
In this paper, we investigate multi user chirp spread spectrum with noncoherent detection as a continuation of our work on coherent detection in [1]. We derive the analytical bit error ratio (BER) expression for binary chirp spread spectrum (BCSS) in the presence of multiple access interference (MAI) caused by correlation with other user signals because of either asynchronism or Doppler shifts, or both, and validate with simulations. To achieve this we analyze the signal cross correlations, and compare traditional linear chirps with our recently-proposed nonlinear chirps introduced in [1] and with other nonlinear chirps from the literature. In doing so we illustrate the superior performance of our new nonlinear chirp designs in these practical conditions, for the noncoherent counterpart of [1].
This paper considers the application of reconfigurable intelligent surfaces (RISs) (a.k.a. intelligent reflecting surfaces (IRSs)) to assist multiuser multiple-input multiple-output (MIMO) uplink transmission from several multi-antenna user terminals (UTs) to a multi-antenna base station (BS). For reducing the signaling overhead, only partial channel state information (CSI), including the instantaneous CSI between the RIS and the BS as well as the slowly varying statistical CSI between the UTs and the RIS, is exploited in our investigation. In particular, an optimization framework is proposed for jointly designing the transmit covariance matrices of the UTs and the RIS phase shift matrix to maximize the system global energy efficiency (GEE) with partial CSI. We first obtain closed-form solutions for the eigenvectors of the optimal transmit covariance matrices of the UTs. Then, to facilitate the design of the transmit power allocation matrices and the RIS phase shifts, we derive an asymptotically deterministic equivalent of the objective function with the aid of random matrix theory. We further propose a suboptimal algorithm to tackle the GEE maximization problem with guaranteed convergence, capitalizing on the approaches of alternating optimization, fractional programming, and sequential optimization. Numerical results substantiate the effectiveness of the proposed approach as well as the considerable GEE gains provided by the RIS-assisted transmission scheme over the traditional baselines.
This paper investigates robust and secure multiuser multiple-input single-output (MISO) downlink communications assisted by a self-sustainable intelligent reflection surface (IRS), which can simultaneously reflect and harvest energy from the received signals. We study the joint design of beamformers at an access point (AP) and the phase shifts as well as the energy harvesting schedule at the IRS for maximizing the system sum-rate. The design is formulated as a non-convex optimization problem taking into account the wireless energy harvesting capability of IRS elements, secure communications, and the robustness against the impact of channel state information (CSI) imperfection. Subsequently, we propose a computationally-efficient iterative algorithm to obtain a suboptimal solution to the design problem. In each iteration, S-procedure and the successive convex approximation are adopted to handle the intermediate optimization problem. Our simulation results unveil that: 1) there is a non-trivial trade-off between the system sum-rate and the self-sustainability of the IRS; 2) the performance gain achieved by the proposed scheme is saturated with a large number of energy harvesting IRS elements; 3) an IRS equipped with small bit-resolution discrete phase shifters is sufficient to achieve a considerable system sum-rate of the ideal case with continuous phase shifts.
This paper considers an energy harvesting (EH) based multiuser mobile edge computing (MEC) system, where each user utilizes the harvested energy from renewable energy sources to execute its computation tasks via computation offloading and local computing. Towards maximizing the systems weighted computation rate (i.e., the number of weighted users computing bits within a finite time horizon) subject to the users energy causality constraints due to dynamic energy arrivals, the decision for joint computation offloading and local computing over time is optimized {em over time}. Assuming that the profile of channel state information and dynamic task arrivals at the users is known in advance, the weighted computation rate maximization problem becomes a convex optimization problem. Building on the Lagrange duality method, the well-structured optimal solution is analytically obtained. Both the users local computing and offloading rates are shown to have a monotonically increasing structure. Numerical results show that the proposed design scheme can achieve a significant performance gain over the alternative benchmark schemes.
Impulse-Radio (IR) is a wideband modulation technique that can support multiple users by employing random Time-Hopping (TH) combined with repeated transmissions. The latter is aimed at alleviating the impact of collisions. This work employs a graphical model for describing the multiuser system which, in turn, facilitates the inclusion of general coding schemes. Based on factor graph representation of the system, several iterative multiuser detectors are presented. These detectors are applicable for any binary linear coding scheme. The performance of the proposed multiuser detectors is evaluated via simulations revealing large gains with low complexity.
Intelligent reflecting surface (IRS) is an emerging technology that is able to reconfigure the wireless channel via tunable passive signal reflection and thereby enhance the spectral and energy efficiency of wireless networks cost-effectively. In this paper, we study an IRS-aided multiuser multiple-input single-output (MISO) wireless system and adopt the two-timescale (TTS) transmission to reduce the signal processing complexity and channel training overhead as compared to the existing schemes based on the instantaneous channel state information (I-CSI), and at the same time, exploit the multiuser channel diversity in transmission scheduling. Specifically, the long-term passive beamforming is designed based on the statistical CSI (S-CSI) of all links, while the short-term active beamforming is designed to cater to the I-CSI of all users reconfigured channels with optimized IRS phase shifts. We aim to minimize the average transmit power at the access point (AP), subject to the users individual quality of service (QoS) constraints. The formulated stochastic optimization problem is non-convex and difficult to solve since the long-term and short-term design variables are complicatedly coupled in the QoS constraints. To tackle this problem, we propose an efficient algorithm, called the primal-dual decomposition based TTS joint active and passive beamforming (PDD-TJAPB), where the original problem is decomposed into a long-term problem and a family of short-term problems, and the deep unfolding technique is employed to extract gradient information from the short-term problems to construct a convex surrogate problem for the long-term problem. The proposed algorithm is proved to converge to a stationary solution of the original problem almost surely. Simulation results are presented which demonstrate the advantages and effectiveness of the proposed algorithm as compared to benchmark schemes.