Do you want to publish a course? Click here

Robust and Secure Sum-Rate Maximization for Multiuser MISO Downlink Systems with Self-sustainable IRS

119   0   0.0 ( 0 )
 Added by Shaokang Hu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper investigates robust and secure multiuser multiple-input single-output (MISO) downlink communications assisted by a self-sustainable intelligent reflection surface (IRS), which can simultaneously reflect and harvest energy from the received signals. We study the joint design of beamformers at an access point (AP) and the phase shifts as well as the energy harvesting schedule at the IRS for maximizing the system sum-rate. The design is formulated as a non-convex optimization problem taking into account the wireless energy harvesting capability of IRS elements, secure communications, and the robustness against the impact of channel state information (CSI) imperfection. Subsequently, we propose a computationally-efficient iterative algorithm to obtain a suboptimal solution to the design problem. In each iteration, S-procedure and the successive convex approximation are adopted to handle the intermediate optimization problem. Our simulation results unveil that: 1) there is a non-trivial trade-off between the system sum-rate and the self-sustainability of the IRS; 2) the performance gain achieved by the proposed scheme is saturated with a large number of energy harvesting IRS elements; 3) an IRS equipped with small bit-resolution discrete phase shifters is sufficient to achieve a considerable system sum-rate of the ideal case with continuous phase shifts.

rate research

Read More

351 - Zhifei Lin , Feng Wang , 2021
This paper considers an energy harvesting (EH) based multiuser mobile edge computing (MEC) system, where each user utilizes the harvested energy from renewable energy sources to execute its computation tasks via computation offloading and local computing. Towards maximizing the systems weighted computation rate (i.e., the number of weighted users computing bits within a finite time horizon) subject to the users energy causality constraints due to dynamic energy arrivals, the decision for joint computation offloading and local computing over time is optimized {em over time}. Assuming that the profile of channel state information and dynamic task arrivals at the users is known in advance, the weighted computation rate maximization problem becomes a convex optimization problem. Building on the Lagrange duality method, the well-structured optimal solution is analytically obtained. Both the users local computing and offloading rates are shown to have a monotonically increasing structure. Numerical results show that the proposed design scheme can achieve a significant performance gain over the alternative benchmark schemes.
Intelligent reflecting surface (IRS) is of low-cost and energy-efficiency and will be a promising technology for the future wireless communications like sixth generation. To address the problem of conventional directional modulation (DM) that Alice only transmits single confidential bit stream (CBS) to Bob with multiple antennas in a line-of-sight channel, IRS is proposed to create friendly multipaths for DM such that two CBSs can be transmitted from Alice to Bob. This will significantly enhance the secrecy rate (SR) of DM. To maximize the SR (Max-SR), a general non-convex optimization problem is formulated with the unit-modulus constraint of IRS phase-shift matrix (PSM), and the general alternating iterative (GAI) algorithm is proposed to jointly obtain the transmit beamforming vectors (TBVs) and PSM by alternately optimizing one and fixing another. To reduce its high complexity, a low-complexity iterative algorithm for Max-SR is proposed by placing the constraint of null-space (NS) on the TBVs, called NS projection (NSP). Here, each CBS is transmitted separately in the NSs of other CBS and AN channels. Simulation results show that the SRs of the proposed GAI and NSP can approximately double that of IRS-based DM with single CBS for massive IRS in the high signal-to-noise ratio region.
Rate-Splitting Multiple Access (RSMA) has recently appeared as a powerful and robust multiple access and interference management strategy for downlink Multi-user (MU) multi-antenna communications. In this work, we study the precoder design problem for RSMA scheme in downlink MU systems with both perfect and imperfect Channel State Information at the Transmitter (CSIT) and assess the role and benefits of transmitting multiple common streams. Unlike existing works which have considered single-antenna receivers (Multiple-Input Single-Output--MISO), we propose and extend the RSMA framework for multi-antenna receivers (Multiple-Input Multiple-Output--MIMO) and formulate the precoder optimization problem with the aim of maximizing the Weighted Ergodic Sum-Rate (WESR). Precoder optimization is solved using Sample Average Approximation (SAA) together with the proposed vectorization and Weighted Minimum Mean Square Error (WMMSE) based approach. Achievable sum-Degree of Freedom (DoF) of RSMA is derived for the proposed framework as an increasing function of the number of transmitted common and private streams, which is further validated by the Ergodic Sum Rate (ESR) performance using Monte Carlo simulations. Conventional MU-MIMO based on linear precoders and Non-Orthogonal Multiple Access (NOMA) schemes are considered as baselines. Numerical results show that with imperfect CSIT, the sum-DoF and ESR performance of RSMA is superior than that of the two baselines, and is increasing with the number of transmitted common streams. Moreover, by better managing the interference, RSMA not only has significant ESR gains over baseline schemes but is more robust to CSIT inaccuracies, network loads and user deployments.
105 - Gui Zhou , Cunhua Pan , Hong Ren 2020
In practice, residual transceiver hardware impairments inevitably lead to distortion noise which causes the performance loss. In this paper, we study the robust transmission design for a reconfigurable intelligent surface (RIS)-aided secure communication system in the presence of transceiver hardware impairments. We aim for maximizing the secrecy rate while ensuring the transmit power constraint on the active beamforming at the base station and the unit-modulus constraint on the passive beamforming at the RIS. To address this problem, we adopt the alternate optimization method to iteratively optimize one set of variables while keeping the other set fixed. Specifically, the successive convex approximation (SCA) method is used to solve the active beamforming optimization subproblem, while the passive beamforming is obtained by using the semidefinite program (SDP) method. Numerical results illustrate that the proposed transmission design scheme is more robust to the hardware impairments than the conventional non-robust scheme that ignores the impact of the hardware impairments.
We investigate the joint uplink-downlink design for time-division-duplexing (TDD) and frequency-division-duplexing (FDD) multi-user systems aided by an intelligent reflecting surface (IRS). We formulate and solve a multi-objective optimization problem to maximize uplink and downlink rates as a weighted-sum problem (WSP) that captures the trade-off between achievable uplink and downlink rates. We propose a resource allocation design that optimizes the WSP by jointly optimizing the beamforming vectors, power control and IRS phase shifts where the same IRS configuration is used for assisting uplink and downlink transmissions. In TDD, the proposed IRS design reduces the overhead associated with IRS configuration and the need for quiet periods while updating the IRS. In addition, a joint IRS design is critical for supporting concurrent uplink and downlink transmissions in FDD. We investigate the effect of different user-weighting strategies and different parameters on the performance of the joint IRS design and the resultant uplink-downlink trade-off regions. In all FDD scenarios and some TDD scenarios, the joint design significantly outperforms the heuristic of using the IRS configuration optimized for uplink (respectively, downlink) to assist the downlink (respectively, uplink) transmissions and substantially bridges the gap to the upper bound of allowing different IRS configurations in uplink and downlink.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا