Do you want to publish a course? Click here

Collective authorship in Ukrainian science: marginal effect or new phenomenon?

230   0   0.0 ( 0 )
 Added by Olesya Mryglod
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

One of the features of modern science is the formation of stable large collaborations of researchers working together within the projects that require the concentration of huge financial and human resources. Results of such common work are published in scientific papers by large co-authorship teams that include sometimes thousands of names. The goal of this work is to study the influence of such publications on the values of scientometric indicators calculated for individuals, research groups and science of Ukraine in general. Bibliometric data related to Ukraine, some academic institutions and selected individual researchers were collected from Scopus database and used for our study. It is demonstrated that while the relative share of publications by collective authors is comparatively small, their presence in a general pool can lead to statistically significant effects. The obtained results clearly show that traditional quantitative approaches for research assessment should be changed in order to take into account this phenomenon. Keywords: collective authorship, scientometrics, group science, Ukraine.



rate research

Read More

Throughout history, a relatively small number of individuals have made a profound and lasting impact on science and society. Despite long-standing, multi-disciplinary interests in understanding careers of elite scientists, there have been limited attempts for a quantitative, career-level analysis. Here, we leverage a comprehensive dataset we assembled, allowing us to trace the entire career histories of nearly all Nobel laureates in physics, chemistry, and physiology or medicine over the past century. We find that, although Nobel laureates were energetic producers from the outset, producing works that garner unusually high impact, their careers before winning the prize follow relatively similar patterns as ordinary scientists, being characterized by hot streaks and increasing reliance on collaborations. We also uncovered notable variations along their careers, often associated with the Nobel prize, including shifting coauthorship structure in the prize-winning work, and a significant but temporary dip in the impact of work they produce after winning the Nobel. Together, these results document quantitative patterns governing the careers of scientific elites, offering an empirical basis for a deeper understanding of the hallmarks of exceptional careers in science.
Quantifying success in science plays a key role in guiding funding allocations, recruitment decisions, and rewards. Recently, a significant amount of progresses have been made towards quantifying success in science. This lack of detailed analysis and summary continues a practical issue. The literature reports the factors influencing scholarly impact and evaluation methods and indices aimed at overcoming this crucial weakness. We focus on categorizing and reviewing the current development on evaluation indices of scholarly impact, including paper impact, scholar impact, and journal impact. Besides, we summarize the issues of existing evaluation methods and indices, investigate the open issues and challenges, and provide possible solutions, including the pattern of collaboration impact, unified evaluation standards, implicit success factor mining, dynamic academic network embedding, and scholarly impact inflation. This paper should help the researchers obtaining a broader understanding of quantifying success in science, and identifying some potential research directions.
Growth of science is a prevalent issue in science of science studies. In recent years, two new bibliographic databases have been introduced which can be used to study growth processes in science from centuries back: Dimensions from Digital Science and Microsoft Academic. In this study, we used publication data from these new databases and added publication data from two established databases (Web of Science from Clarivate Analytics and Scopus from Elsevier) to investigate scientific growth processes from the beginning of the modern science system until today. We estimated regression models that included simultaneously the publication counts from the four databases. The results of the unrestricted growth of science calculations show that the overall growth rate amounts to 4.10% with a doubling time of 17.3 years. As the comparison of various segmented regression models in the current study revealed, the model with five segments fits the publication data best. We demonstrated that these segments with different growth rates can be interpreted very well, since they are related to either phases of economic (e.g., industrialization) and / or political developments (e.g., Second World War). In this study, we additionally analyzed scientific growth in two broad fields (Physical and Technical Sciences as well as Life Sciences) and the relationship of scientific and economic growth in UK. The comparison between the two fields revealed only slight differences. The comparison of the British economic and scientific growth rates showed that the economic growth rate is slightly lower than the scientific growth rate.
239 - M.V. Simkin 2021
Computing such correlation coefficient would be straightforward had we had available the rankings given by the prize committee to all scientists in the pool. In reality we only have citation rankings for all scientists. This means, however, that we have the ordinal rankings of the prize winners with regard to citation metrics. I use maximum likelihood method to infer the most probable correlation coefficient to produce the observed pattern of ordinal ranks of the prize winners. I get the correlation coefficients of 0.47 and 0.59 between the composite citation indicator and getting Abel Prize and Fields Medal, respectively. The correlation coefficient between getting a Nobel Prize and the Q-factor is 0.65. These coefficients are of the same magnitude as the correlation coefficient between Elo ratings of the chess players and their popularity measured as numbers of webpages mentioning the players.
Todays scientific research is an expensive enterprise funded largely by taxpayers and corporate groups monies. It is a critical part in the competition between nations, and all nations want to discover fields of research that promise to create future industries, and dominate these by building up scientific and technological expertise early. However, our understanding of the value chain going from science to technology is still in a relatively infant stage, and the conversion of scientific leadership into market dominance remains very much an alchemy rather than a science. In this paper, we analyze bibliometric records of scientific journal publications and patents related to graphene, at the aggregate level as well as on the temporal and spatial dimensions. We find the present leaders of graphene science and technology emerged rather late in the race, after the initial scientific leaders lost their footings. More importantly, notwithstanding the amount of funding already committed, we find evidences that suggest the Golden Eras of graphene science and technology were in 2010 and 2012 respectively, in spite of the continued growth of journal and patent publications in this area.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا