Do you want to publish a course? Click here

Steady-state nucleosynthesis throughout the Galaxy

113   0   0.0 ( 0 )
 Added by Roland Diehl
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Measurement and astrophysical interpretation of characteristic gamma-ray lines from nucleosynthesis was one of the prominent science goals of the INTEGRAL mission and in particular its spectrometer SPI. Emission from 26Al and from 60Fe decay lines originates from accumulated ejecta of nucleosynthesis sources, and appears diffuse in nature. 26Al and 60Fe are believed to originate mostly from massive star clusters. Gamma-ray observations open an interesting window to trace the fate and flow of nucleosynthesis ejecta, after they have left the immediate sources and their birth sites, and on their path to mix with ambient interstellar gas. The INTEGRAL 26Al emission image confirms earlier findings of clumpiness and an extent along the entire plane of the Galaxy, supporting its origin from massive-star groups. INTEGRAL spectroscopy resolved the line and found Doppler broadenings and systematic shifts from large-scale galactic rotation. But an excess velocity of ~200 km/s suggests that 26Al decays preferentially within large superbubbles that extend in forward directions between spiral arms. The detection of 26Al line emission from nearby Orion and the Eridanus superbubble supports this interpretation. Positrons from beta+ decays of 26Al and other nucleosynthesis ejecta have been found to not explain the morphology of positron annihilation gamma-rays at 511 keV that have been measured by INTEGRAL. The 60Fe signal measured by INTEGRAL is diffuse but too weak for an imaging interpretation, an origin from point-like/concentrated sources is excluded. The 60Fe/26Al ratio is constrained to a range 0.2-0.4. Beyond improving precision of these results, diffuse nucleosynthesis contributions from novae (through 22Na radioactivity) and from past neutron star mergers in our Galaxy (from r-process radioactivity) are exciting new prospects for the remaining mission extensions.



rate research

Read More

Indirect detection experiments typically measure the flux of annihilating dark matter (DM) particles propagating freely through galactic halos. We consider a new scenario where celestial bodies focus DM annihilation events, increasing the efficiency of halo annihilation. In this setup, DM is first captured by celestial bodies, such as neutron stars or brown dwarfs, and then annihilates within them. If DM annihilates to sufficiently long-lived particles, they can escape and subsequently decay into detectable radiation. This produces a distinctive annihilation morphology, which scales as the product of the DM and celestial body densities, rather than as DM density squared. We show that this signal can dominate over the halo annihilation rate in $gamma$-ray observations in both the Milky Way Galactic center and globular clusters. We use textit{Fermi} and H.E.S.S. data to constrain the DM-nucleon scattering cross section, setting powerful new limits down to $sim10^{-39}~$cm$^2$ for sub-GeV DM using brown dwarfs, which is up to nine orders of magnitude stronger than existing limits. We demonstrate that neutron stars can set limits for TeV-scale DM down to about $10^{-47}~$cm$^2$.
There has recently been some interest in the prospect of detecting ionized intergalactic baryons by examining the properties of incoherent light from background cosmological sources, namely quasars. Although the paper by cite{lieu13} proposed a way forward, it was refuted by the later theoretical work of cite{hir14} and observational study of cite{hal16}. In this paper we investigated in detail the manner in which incoherent radiation passes through a dispersive medium both from the frameworks of classical and quantum electrodynamics, which led us to conclude that the premise of cite{lieu13} would only work if the pulses involved are genuinely classical ones involving many photons per pulse, but unfortunately each photon must not be treated as a pulse that is susceptible to dispersive broadening. We are nevertheless able to change the tone of the paper at this juncture, by pointing out that because current technology allows one to measure the phase of individual modes of radio waves from a distant source, the most reliable way of obtaining irrefutable evidence of dispersion, namely via the detection of its unique signature of a quadratic spectral phase, may well be already accessible. We demonstrate how this technique is only applied to measure the column density of the ionized intergalactic medium.
We report the results of our numerical simulation of classical-dissipative dynamics of a charged particle subjected to a non-markovian stochastic forcing. We find that the system develops a steady-state orbital magnetic moment in the presence of a static magnetic field. Very significantly, the sign of the orbital magnetic moment turns out to be {it paramagnetic} for our choice of parameters, varied over a wide range. This is shown specifically for the case of classical dynamics driven by a Kubo-Anderson type non-markovian noise. Natural spatial boundary condition was imposed through (1) a soft (harmonic) confining potential, and (2) a hard potential, approximating a reflecting wall. There was no noticeable qualitative difference. What appears to be crucial to the orbital magnetic effect noticed here is the non-markovian property of the driving noise chosen. Experimental realization of this effect on the laboratory scale, and its possible implications are briefly discussed. We would like to emphasize that the above steady-state classical orbital paramagnetic moment complements, rather than contradicts the Bohr-van Leeuwen (BvL) theorem on the absence of classical orbital diamagnetism in thermodynamic equilibrium.
We assemble the largest sample of oxygen rich Miras to date and highlight their importance for age-dating the components of the Galaxy. Using data from the Catalina Rapid Transient Survey and the All Sky Automated Survey for Supernovae, we extract a clean sample of $sim 2,400$ O-Miras, stretching from the Galactic Bulge to the distant halo. Given that the period of O-Miras correlates with age, this offers a new way of determining age gradients throughout the Galaxy. We use our sample to show (i) disk O-Miras have periods increasing on moving outwards from ~ 3 to 15 kpc, so the outer disk O-Miras are younger than the inner disk, (ii) the transition from younger disk to halo O-Miras occurs at r ~ 15 kpc and is marked by a plummeting in period, (iii) there exists a population of young O-Miras likely kicked from the disk to heights of order of |Z| ~ 10 kpc, (iv) great circle counts of old Miras show strong evidence for distant debris agglomeration associated with the Magellanic Clouds, (v) seven stars in our samples are located at distances between 200 and 500 kpc surpassing all previously established records, and, finally, (vi) O-Miras may be present in the Fornax, Sculptor, Sextans and Leo II Galactic dwarf spheroidals, as well as the distant globular cluster Pal 4. We spotlight the importance of O-Mira in the Era of Gaia as universal chronometers of the Galactic populations.
296 - Eric Feigelson 2009
Most stars are born in rich young stellar clusters (YSCs) embedded in giant molecular clouds. The most massive stars live out their short lives there, profoundly influencing their natal environments by ionizing HII regions, inflating wind-blown bubbles, and soon exploding as supernovae. Thousands of lower-mass pre-main sequence stars accompany the massive stars, and the expanding HII regions paradoxically trigger new star formation as they destroy their natal clouds. While this schematic picture is established, our understanding of the complex astrophysical processes involved in clustered star formation have only just begun to be elucidated. The technologies are challenging, requiring both high spatial resolution and wide fields at wavelengths that penetrate obscuring molecular material and remove contaminating Galactic field stars. We outline several important projects for the coming decade: the IMFs and structures of YSCs; triggered star formation around YSC; the fate of OB winds; the stellar populations of Infrared Dark Clouds; the most massive star clusters in the Galaxy; tracing star formation throughout the Galactic Disk; the Galactic Center region and YSCs in the Magellanic Clouds. Programmatic recommendations include: developing a 30m-class adaptive optics infrared telescope; support for high-resolution and wide field X-ray telescopes; large-aperture sub-millimeter and far-infrared telescopes; multi-object infrared spectrographs; and both numerical and analytical theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا