Do you want to publish a course? Click here

Classical orbital paramagnetism in non-equilibrium steady state

243   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the results of our numerical simulation of classical-dissipative dynamics of a charged particle subjected to a non-markovian stochastic forcing. We find that the system develops a steady-state orbital magnetic moment in the presence of a static magnetic field. Very significantly, the sign of the orbital magnetic moment turns out to be {it paramagnetic} for our choice of parameters, varied over a wide range. This is shown specifically for the case of classical dynamics driven by a Kubo-Anderson type non-markovian noise. Natural spatial boundary condition was imposed through (1) a soft (harmonic) confining potential, and (2) a hard potential, approximating a reflecting wall. There was no noticeable qualitative difference. What appears to be crucial to the orbital magnetic effect noticed here is the non-markovian property of the driving noise chosen. Experimental realization of this effect on the laboratory scale, and its possible implications are briefly discussed. We would like to emphasize that the above steady-state classical orbital paramagnetic moment complements, rather than contradicts the Bohr-van Leeuwen (BvL) theorem on the absence of classical orbital diamagnetism in thermodynamic equilibrium.



rate research

Read More

While studying systems driven out of equilibrium, one usually employs a drive that is not directly coupled to the degrees of freedom of the system. In contrast to such a case, we here unveil a hitherto unexplored situation of state-dependent driving, whereby a direct coupling exists between the two. We demonstrate the ubiquity of such a driving, and establish that it leads to a nontrivial steady-state that is qualitatively opposite to what is observed in other driven systems. Further, we show how state-dependent driving in a many-body system can be effectively captured in terms of a single-particle model. The origin of this description may ultimately be traced to the fact that state-dependent driving results in a force that undergoes repeated resetting in time.
We examine how systems in non-equilibrium steady states close to a continuous phase transition can still be described by a Landau potential if one forgoes the assumption of analyticity. In a system simultaneously coupled to several baths at different temperatures, the non-analytic potential arises from the different density of states of the baths. In periodically driven-dissipative systems, the role of multiple baths is played by a single bath transferring energy at different harmonics of the driving frequency. The mean-field critical exponents become dependent on the low-energy features of the two most singular baths. We propose an extension beyond mean field.
Modern methods for sampling rugged landscapes in state space mainly rely on knowledge of the relative probabilities of microstates, which is given by the Boltzmann factor for equilibrium systems. In principle, trajectory reweighting provides an elegant way to extend these algorithms to non-equilibrium systems, by numerically calculating the relative weights that can be directly substituted for the Boltzmann factor. We show that trajectory reweighting has many commonalities with Rosenbluth sampling for chain macromolecules, including practical problems which stem from the fact that both are iterated importance sampling schemes: for long trajectories the distribution of trajectory weights becomes very broad and trajectories carrying high weights are infrequently sampled, yet long trajectories are unavoidable in rugged landscapes. For probing the probability landscapes of genetic switches and similar systems, these issues preclude the straightforward use of trajectory reweighting. The analogy to Rosenbluth sampling suggests though that path ensemble methods such as PERM (pruned-enriched Rosenbluth method) could provide a way forward.
We extend the notion of the Eigenstate Thermalization Hypothesis (ETH) to Open Quantum Systems governed by the Gorini-Kossakowski-Lindblad-Sudarshan (GKLS) Master Equation. We present evidence that the eigenstates of non-equilibrium steady state (NESS) density matrices obey a generalization of ETH in boundary-driven systems when the bulk Hamiltonian is non-integrable, just as eigenstates of Gibbs density matrices are conjectured to do in equilibrium. This generalized ETH, which we call NESS-ETH, can be used to obtain representative pure states that reproduce the expectation values of few-body operators in the NESS. The density matrices of these representative pure states can be further interpreted as weak solutions of the GKLS Master Equation. Additionally, we explore the validity and breakdown of NESS-ETH in the presence of symmetries, integrability and many-body localization in the bulk Hamiltonian.
143 - Spyros Sotiriadis 2020
Aiming at studying the emergence of Non-Equilibrium Steady States (NESS) in quantum integrable models by means of an exact analytical method, we focus on the Tonks-Girardeau or hard-core boson limit of the Lieb-Liniger model. We consider the abrupt expansion of a gas from one half to the entire confining box, a prototypical case of inhomogeneous quench, also known as geometric quench. Based on the exact calculation of quench overlaps, we develop an analytical method for the derivation of the NESS by rigorously treating the thermodynamic and large time and distance limit. Our method is based on complex analysis tools for the derivation of the asymptotics of the many-body wavefunction, does not make essential use of the effectively non-interacting character of the hard-core boson gas and is sufficiently robust for generalisation to the genuinely interacting case.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا