No Arabic abstract
We present results from our Giant Metrewave Radio Telescope (GMRT) HI, Himalayan Chandra Telescope (HCT) Halpha, 1m Sampurnanand Telescope (ST) and 1.3m Devasthal Fast Optical Telescope (DFOT) deep optical observations of NGC 7805/6 (Arp 112) system to test KUG 2359+311s tidal dwarf galaxy (TDG) candidacy and explore the properties of the interacting system. Our GMRT HI map shows no HI detection associated with KUG 2359+311, nor any HI tail or bridge-like structure connecting KUG 2359+311 to the NGC 7805/6 system. Our HCT Halpha image on the other hand, shows strong detections in KUG 2359+311, with net SFR ~ 0.035$pm 0.009 {rm M}_{odot},{rm yr}^{-1}$. The Halpha data constrains the redshift of KUG 2359+311 to $0.00 le z le 0.043$, compared to the redshift of NGC 7806 of ~ 0.015. TDGs detected to date have all been HI rich, and displayed HI, ionised gas and stellar tidal debris trails (bridges or tails) linking them to their parent systems. But neither our HI data nor our optical images, while three magnitudes deeper than SDSS, reveal tidal trail connecting KUG 2359+311 to NGC 7805/6. Lack of HI , presence of an old stellar population, ongoing star formation, reasonably high SFR compared to normal dwarf galaxies suggest that KUG 2359+311 may not be an Arp 112 TDG. It is most likely a case of a regular gas-rich dwarf galaxy undergoing a morphological transformation after having lost its entire gas content to an interaction with the Arp 112 system. Redshift and metallicity from future spectroscopic observations of KUG 2359+311 would help clarify the nature of this enigmatic structure.
We present results from our Giant Metrewave Radio Telescope (GMRT) HI observations of the interacting pair Arp 202 (NGC 2719 and NGC 2719A). Earlier deep UV(GALEX) observations of this system revealed a tidal tail like extension with a diffuse object towards its end, proposed as a tidal dwarf galaxy (TDG) candidate. We detect HI emission from the Arp 202 system, including HI counterparts for the tidal tail and the TDG candidate. Our GMRT HI morphological and kinematic results clearly link the HI tidal tail and the HI TDG counterparts to the interaction between NGC 2719 and NGC 2719A, thus strengthening the case for the TDG. The Arp 202 TDG candidate belongs to a small group of TDG candidates with extremely blue colours. In order to gain a better understanding of this group we carried out a comparative study of their properties from the available data. We find that HI (and probably stellar) masses of this extremely blue group are similar to the lowest HI mass TDGs in the literature. However the number of such blue TDG candidates examined so far is too small to conclude whether or not their properties justify them to be considered as a subgroup of TDGs.
We present results from our Giant Metrewave Radio Telescope (GMRT) HI observations of the Arp 305 system. The system consists of two interacting spiral galaxies NGC 4016 and NGC 4017, a large amount of resultant tidal debris and a prominent tidal dwarf galaxy (TDG) candidate projected within the tidal bridge between the two principal galaxies. Our higher resolution GMRT HI mapping, compared to previous observations, allowed detailed study of smaller scale features. Our HI analysis supports the conclusion in Hancock et al. (2009) that the most recent encounter between the pair occurred $sim$ 4 $times$ 10$^8$ yrs ago. The GMRT observations also show HI features near NGC 4017 which may be remnants of an earlier encounter between the two galaxies. The HI properties of the Bridge TDG candidate include: M(HI) $sim$ 6.6 $times$ 10$^8$ msolar and V(HI) = 3500$pm$ 7 km/s, which is in good agreement with the velocities of the parent galaxies. Additionally the TDGs HI linewidth of 30 km/s and a modest velocity gradient together with its SFR of 0.2 msolar/yr add to the evidence favouring the bridge candidate being a genuine TDG. The Bridge TDGs textit{Spitzer} 3.6 $mu$m and 4.5 $mu$m counterparts with a [3.6]--[4.5] colour $sim$ -0.2 mag suggests stellar debris may have seeded its formation. Future spectroscopic observations could confirm this formation scenario and provide the metallicity which is a key criteria for the validation for TDG candidates.
We report the discovery of a UV-bright tidal dwarf galaxy candidate in the NGC 4631/4656 galaxy group, which we designate NGC 4656UV. Using survey and archival data spanning from 1.4 GHz to the ultraviolet we investigate the gas kinematics and stellar properties of this system. The HI morphologies of NGC 4656UV and its parent galaxy NGC 4656 are extremely disturbed, with significant amounts of counterrotating and extraplanar gas. From UV-FIR photometry, computed using a new method to correct for surface gradients on faint objects, we find that NGC 4656UV has no significant dust opacity and a blue spectral energy distribution. We compute a star formation rate of 0.027 M_sun yr^-1 from the FUV flux and measure a total HI mass of 3.8x10^8 M_sun for the object. Evolutionary synthesis modeling indicates that NGC 4656UV is a low metallicity system whose only major burst of star formation occurred within the last ~260-290 Myr. The age of the stellar population is consistent with a rough timescale for a recent tidal interaction between NGC 4656 and NGC 4631, although we discuss the true nature of the object--whether it is tidal or pre-existing in origin--in the context of its metallicity being a factor of ten lower than its parent galaxy. We estimate that NGC 4656UV is either marginally bound or unbound. If bound, it contains relatively low amounts of dark matter. The abundance of archival data allows for a deeper investigation into this dynamic system than is currently possible for most TDG candidates.
We present subarcsecond resolution infrared (IR) imaging and mid-IR spectroscopic observations of the Seyfert 1.9 galaxy NGC 2992, obtained with the Gemini North Telescope and the Gran Telescopio CANARIAS (GTC). The N-band image reveals faint extended emission out to ~3 kpc, and the PAH features detected in the GTC/CanariCam 7.5-13 micron spectrum indicate that the bulk of this extended emission is dust heated by star formation. We also report arcsecond resolution MIR and far-IR imaging of the interacting system Arp 245, taken with the Spitzer Space Telescope and the Herschel Space Observatory. Using these data, we obtain nuclear fluxes using different methods and find that we can only recover the nuclear fluxes obtained from the subarcsecond data at 20-25 micron, where the AGN emission dominates. We fitted the nuclear IR spectral energy distribution of NGC 2992, including the GTC/CanariCam nuclear spectrum (~50 pc), with clumpy torus models. We then used the best-fitting torus model to decompose the Spitzer/IRS 5-30 spectrum (~630 pc) in AGN and starburst components, using different starburst templates. We find that, whereas at shorter mid-IR wavelengths the starburst component dominates (64% at 6 micron), the AGN component reaches 90% at 20 micron. We finally obtained dust masses, temperatures and star formation rates for the different components of the Arp 245 system and find similar values for NGC 2992 and NGC 2993. These measurements are within those reported for other interacting systems in the first stages of the interaction.
We report the discovery of active star formation in the HI cloud associated with the interacting Seyfert system NGC 3227/NGC 3226 that was originally identified as a candidate tidal dwarf galaxy (TDG) by Mundell et al. and that we name J1023+1952. We present the results of broad-band BRIJHK and ultraviolet imaging that show the HI cloud is associated with massive on-going star formation seen as a cluster of blue knots (M_B < -15.5 mag) surrounded by a diffuse ultraviolet halo and co-spatial with a ridge of high column density neutral hydrogen its southern half. We also detect Ha emission from the knots with a flux density corresponding to a star-formation rate of SFR~0.011 Msun per yr. Although J1023+1952 spatially overlaps the edge of the disk of NGC 3227, it has a mean HI velocity 150 km/s higher than that of NGC 3227 so is kinematically distinct; comparison of ionized and neutral gas kinematics in the star-forming region show closely matched velocities, providing strong evidence that the knots are embedded in J1023+1952 and do not merely lie behind in the disk of NGC 3227, thus confirming J1023+1952 as a gas-rich dwarf galaxy. We discuss two scenarios for the origin of J1023+1952; as a third, pre-existing dwarf galaxy involved in the interaction with NGC 3227 and NGC 3226, or a newly-forming dwarf galaxy condensing out of the tidal debris removed from the gaseous disk of NGC 3227. Given the lack of a detectable old stellar population, a tidal origin is more likely. If J1023+1952 is a bound object forming from returning gaseous tidal tail material, we infer a dynamically young age similar to its star-formation age, and suggests it is in the earliest stages of TDG evolution. Whatever the origin of J1023+1952 we suggest that its star formation is shock-triggered by collapsing tidal debris. (Abridged)