Do you want to publish a course? Click here

Bi-tuning of Pre-trained Representations

58   0   0.0 ( 0 )
 Added by Mingsheng Long
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

It is common within the deep learning community to first pre-train a deep neural network from a large-scale dataset and then fine-tune the pre-trained model to a specific downstream task. Recently, both supervised and unsupervised pre-training approaches to learning representations have achieved remarkable advances, which exploit the discriminative knowledge of labels and the intrinsic structure of data, respectively. It follows natural intuition that both discriminative knowledge and intrinsic structure of the downstream task can be useful for fine-tuning, however, existing fine-tuning methods mainly leverage the former and discard the latter. A question arises: How to fully explore the intrinsic structure of data for boosting fine-tuning? In this paper, we propose Bi-tuning, a general learning framework to fine-tuning both supervised and unsupervised pre-trained representations to downstream tasks. Bi-tuning generalizes the vanilla fine-tuning by integrating two heads upon the backbone of pre-trained representations: a classifier head with an improved contrastive cross-entropy loss to better leverage the label information in an instance-contrast way, and a projector head with a newly-designed categorical contrastive learning loss to fully exploit the intrinsic structure of data in a category-consistent way. Comprehensive experiments confirm that Bi-tuning achieves state-of-the-art results for fine-tuning tasks of both supervised and unsupervised pre-trained models by large margins (e.g. 10.7% absolute rise in accuracy on CUB in low-data regime).



rate research

Read More

Large, pre-trained generative models have been increasingly popular and useful to both the research and wider communities. Specifically, BigGANs a class-conditional Generative Adversarial Networks trained on ImageNet---achieved excellent, state-of-the-art capability in generating realistic photos. However, fine-tuning or training BigGANs from scratch is practically impossible for most researchers and engineers because (1) GAN training is often unstable and suffering from mode-collapse; and (2) the training requires a significant amount of computation, 256 Google TPUs for 2 days or 8xV100 GPUs for 15 days. Importantly, many pre-trained generative models both in NLP and image domains were found to contain biases that are harmful to society. Thus, we need computationally-feasible methods for modifying and re-purposing these huge, pre-trained models for downstream tasks. In this paper, we propose a cost-effective optimization method for improving and re-purposing BigGANs by fine-tuning only the class-embedding layer. We show the effectiveness of our model-editing approach in three tasks: (1) significantly improving the realism and diversity of samples of complete mode-collapse classes; (2) re-purposing ImageNet BigGANs for generating images for Places365; and (3) de-biasing or improving the sample diversity for selected ImageNet classes.
Pre-trained language models (PrLM) have to carefully manage input units when training on a very large text with a vocabulary consisting of millions of words. Previous works have shown that incorporating span-level information over consecutive words in pre-training could further improve the performance of PrLMs. However, given that span-level clues are introduced and fixed in pre-training, previous methods are time-consuming and lack of flexibility. To alleviate the inconvenience, this paper presents a novel span fine-tuning method for PrLMs, which facilitates the span setting to be adaptively determined by specific downstream tasks during the fine-tuning phase. In detail, any sentences processed by the PrLM will be segmented into multiple spans according to a pre-sampled dictionary. Then the segmentation information will be sent through a hierarchical CNN module together with the representation outputs of the PrLM and ultimately generate a span-enhanced representation. Experiments on GLUE benchmark show that the proposed span fine-tuning method significantly enhances the PrLM, and at the same time, offer more flexibility in an efficient way.
83 - Jialu Liu , Tianqi Liu , Cong Yu 2021
Effectively modeling text-rich fresh content such as news articles at document-level is a challenging problem. To ensure a content-based model generalize well to a broad range of applications, it is critical to have a training dataset that is large beyond the scale of human labels while achieving desired quality. In this work, we address those two challenges by proposing a novel approach to mine semantically-relevant fresh documents, and their topic labels, with little human supervision. Meanwhile, we design a multitask model called NewsEmbed that alternatively trains a contrastive learning with a multi-label classification to derive a universal document encoder. We show that the proposed approach can provide billions of high quality organic training examples and can be naturally extended to multilingual setting where texts in different languages are encoded in the same semantic space. We experimentally demonstrate NewsEmbeds competitive performance across multiple natural language understanding tasks, both supervised and unsupervised.
This paper presents a novel pre-trained language models (PLM) compression approach based on the matrix product operator (short as MPO) from quantum many-body physics. It can decompose an original matrix into central tensors (containing the core information) and auxiliary tensors (with only a small proportion of parameters). With the decomposed MPO structure, we propose a novel fine-tuning strategy by only updating the parameters from the auxiliary tensors, and design an optimization algorithm for MPO-based approximation over stacked network architectures. Our approach can be applied to the original or the compressed PLMs in a general way, which derives a lighter network and significantly reduces the parameters to be fine-tuned. Extensive experiments have demonstrated the effectiveness of the proposed approach in model compression, especially the reduction in finetuning parameters (91% reduction on average).
We investigate a strategy for improving the efficiency of contrastive learning of visual representations by leveraging a small amount of supervised information during pre-training. We propose a semi-supervised loss, SuNCEt, based on noise-contrastive estimation and neighbourhood component analysis, that aims to distinguish examples of different classes in addition to the self-supervised instance-wise pretext tasks. On ImageNet, we find that SuNCEt can be used to match the semi-supervised learning accuracy of previous contrastive approaches while using less than half the amount of pre-training and compute. Our main insight is that leveraging even a small amount of labeled data during pre-training, and not only during fine-tuning, provides an important signal that can significantly accelerate contrastive learning of visual representations. Our code is available online at github.com/facebookresearch/suncet.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا