Do you want to publish a course? Click here

Implementing Primordial Binaries in Simulations of Star Cluster Formation with a Hybrid MHD and Direct N-Body Method

160   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The fraction of stars in binary systems within star clusters is important for their evolution, but what proportion of binaries form by dynamical processes after initial stellar accretion remains unknown. In previous work, we showed that dynamical interactions alone produced too few low-mass binaries compared to observations. We therefore implement an initial population of binaries in the coupled MHD and direct N-body star cluster formation code Torch. We compare simulations with, and without, initial binary populations and follow the dynamical evolution of the binary population in both sets of simulations, finding that both dynamical formation and destruction of binaries take place. Even in the first few million years of star formation, we find that an initial population of binaries is needed at all masses to reproduce observed binary fractions for binaries with mass ratios above the $q geq 0.1$ detection limit. Our simulations also indicate that dynamical interactions in the presence of gas during cluster formation modify the initial distributions towards binaries with smaller primary masses, larger mass ratios, smaller semi-major axes and larger eccentricities. Systems formed dynamically do not have the same properties as the initial systems, and systems formed dynamically in the presence of an initial population of binaries differ from those formed in simulations with single stars only. Dynamical interactions during the earliest stages of star cluster formation are important for determining the properties of binary star systems.



rate research

Read More

Understanding the formation of stellar clusters requires following the interplay between gas and newly formed stars accurately. We therefore couple the magnetohydrodynamics code FLASH to the N-body code ph4 and the stellar evolution code SeBa using the Astrophysical Multipurpose Software Environment (AMUSE) to model stellar dynamics, evolution, and collisional N-body dynamics and the formation of binary and higher-order multiple systems, while implementing stellar feedback in the form of radiation, stellar winds and supernovae in FLASH. We here describe the algorithms used for each of these processes. We denote this integrated package Torch. We then use this novel numerical method to simulate the formation and early evolution of several examples of open clusters of ~1000 stars formed from clouds with a mass range of 10^3-10^5 M_sun. Analyzing the effects of stellar feedback on the gas and stars of the natal clusters, we find that in these examples, the stellar clusters are resilient to disruption, even in the presence of intense feedback. This can even slightly increase the amount of dense, Jeans unstable gas by sweeping up shells; thus, a stellar wind strong enough to trap its own H II region shows modest triggering of star formation. Our clusters are born moderately mass segregated, an effect enhanced by feedback, and retained after the ejection of their natal gas, in agreement with observations.
We describe a major upgrade of a Monte Carlo code which has previously been used for many studies of dense star clusters. We outline the steps needed in order to calibrate the results of the new Monte Carlo code against $N$-body simulations for large $N$ systems, up to $N=200000$. The new version of the Monte Carlo code (called MOCCA), in addition to the features of the old version, incorporates the direct Fewbody integrator (Fregeau et al. 2004) for three- and four-body interactions, and a new treatment of the escape process based on Fukushige & Heggie (2000). Now stars which fulfil the escape criterion are not removed immediately, but can stay in the system for a certain time which depends on the excess of the energy of a star above the escape energy. They are called potential escapers. With the addition of the Fewbody integrator the code can follow all interaction channels which are important for the rate of creation of various types of objects observed in star clusters, and ensures that the energy generation by binaries is treated in a manner similar to the $N$-body model. There are at most three new parameters which have to be adjusted against $N$-body simulations for large $N$: two (or one, depending on the chosen approach) connected with the escape process, and one responsible for the determination of the interaction probabilities. The values adopted for the free parameters have at most a weak dependence on $N$. They allow MOCCA to reproduce $N$-body results with reasonable precision, not only for the rate of cluster evolution and the cluster mass distribution, but also for the detailed distributions of mass and binding energy of binaries. Additionally, the code can follow the rate of formation of blue stragglers and black hole - black hole binaries.
Observations and theoretical work suggest that globular clusters may be born with initially very large binary fractions. We present first results from our newly modified Monte-Carlo cluster evolution code, which treats binary interactions exactly via direct N-body integration. It is shown that binary scattering interactions generate significantly less energy than predicted by the recipes that have been used in the past to model them in approximate cluster evolution methods. The new result that the cores of globular clusters in the long-lived binary-burning phase are smaller than previously predicted weakens the agreement with observations, thus implying that more than simply stellar dynamics is at work in shaping the globular clusters we observe today.
122 - S. Pasetto , C. Chiosi , D. Kawata 2012
Aims. We present here a new theoretical approach to population synthesis. The aim is to predict colour magnitude diagrams (CMDs) for huge numbers of stars. With this method we generate synthetic CMDs for N-body simulations of galaxies. Sophisticated hydrodynamic N-body models of galaxies require equal quality simulations of the photometric properties of their stellar content. The only prerequisite for the method to work is very little information on the star formation and chemical enrichment histories, i.e. the age and metallicity of all star-particles as a function of time. The method takes into account the gap between the mass of real stars and that of the star-particles in N-body simulations, which best correspond to the mass of star clusters with different age and metallicity, i.e. a manifold of single stellar sopulations (SSP). Methods. The theory extends the concept of SSP to include the phase-space (position and velocity) of each star. Furthermore, it accelerates the building up of simulated CMD by using a database of theoretical SSPs that extends to all ages and metallicities of interest. Finally, it uses the concept of distribution functions to build up the CMD. The technique is independent of the mass resolution and the way the N-body simulation has been calculated. This allows us to generate CMDs for simulated stellar systems of any kind: from open clusters to globular clusters, dwarf galaxies, or spiral and elliptical galaxies. Results. The new theory is applied to an N-body simulation of a disc galaxy to test its performance and highlight its flexibility.
We present 2.5-D global, ideal MHD simulations of magnetically and rotationally driven protostellar jets from Keplerian accretion discs, wherein only the initial magnetic field strength at the inner radius of the disc, $B_{rm i}$, is varied. Using the AMR-MHD code AZEUS, we self-consistently follow the jet evolution into the observational regime ($>10^3,mathrm{AU}$) with a spatial dynamic range of $sim6.5times10^5$. The simulations reveal a three-component outflow: 1) A hot, dense, super-fast and highly magnetised jet core; 2) a cold, rarefied, trans-fast and highly magnetised sheath surrounding the jet core and extending to a tangential discontinuity; and 3) a warm, dense, trans-slow and weakly magnetised shocked ambient medium entrained by the advancing bow shock. The simulations reveal power-law relationships between $B_{rm i}$ and the jet advance speed, $v_{rm jet}$, the average jet rotation speed, $langle v_varphirangle$, as well as fluxes of mass, momentum, and kinetic energy. Quantities that do not depend on $B_{rm i}$ include the plasma-$beta$ of the transported material which, in all cases, seems to asymptote to order unity. Jets are launched by a combination of the magnetic tower and bead-on-a-wire mechanisms, with the former accounting for most of the jet acceleration---even for strong fields---and continuing well beyond the fast magnetosonic point. At no time does the leading bow shock leave the domain and, as such, these simulations generate large-scale jets that reproduce many of the observed properties of protostellar jets including their characteristic speeds and transported fluxes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا