Do you want to publish a course? Click here

Modelling of the Effects of Stellar Feedback during Star Cluster Formation Using a Hybrid Gas and N-Body Method

58   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Understanding the formation of stellar clusters requires following the interplay between gas and newly formed stars accurately. We therefore couple the magnetohydrodynamics code FLASH to the N-body code ph4 and the stellar evolution code SeBa using the Astrophysical Multipurpose Software Environment (AMUSE) to model stellar dynamics, evolution, and collisional N-body dynamics and the formation of binary and higher-order multiple systems, while implementing stellar feedback in the form of radiation, stellar winds and supernovae in FLASH. We here describe the algorithms used for each of these processes. We denote this integrated package Torch. We then use this novel numerical method to simulate the formation and early evolution of several examples of open clusters of ~1000 stars formed from clouds with a mass range of 10^3-10^5 M_sun. Analyzing the effects of stellar feedback on the gas and stars of the natal clusters, we find that in these examples, the stellar clusters are resilient to disruption, even in the presence of intense feedback. This can even slightly increase the amount of dense, Jeans unstable gas by sweeping up shells; thus, a stellar wind strong enough to trap its own H II region shows modest triggering of star formation. Our clusters are born moderately mass segregated, an effect enhanced by feedback, and retained after the ejection of their natal gas, in agreement with observations.



rate research

Read More

The fraction of stars in binary systems within star clusters is important for their evolution, but what proportion of binaries form by dynamical processes after initial stellar accretion remains unknown. In previous work, we showed that dynamical interactions alone produced too few low-mass binaries compared to observations. We therefore implement an initial population of binaries in the coupled MHD and direct N-body star cluster formation code Torch. We compare simulations with, and without, initial binary populations and follow the dynamical evolution of the binary population in both sets of simulations, finding that both dynamical formation and destruction of binaries take place. Even in the first few million years of star formation, we find that an initial population of binaries is needed at all masses to reproduce observed binary fractions for binaries with mass ratios above the $q geq 0.1$ detection limit. Our simulations also indicate that dynamical interactions in the presence of gas during cluster formation modify the initial distributions towards binaries with smaller primary masses, larger mass ratios, smaller semi-major axes and larger eccentricities. Systems formed dynamically do not have the same properties as the initial systems, and systems formed dynamically in the presence of an initial population of binaries differ from those formed in simulations with single stars only. Dynamical interactions during the earliest stages of star cluster formation are important for determining the properties of binary star systems.
We study feedback during massive star formation using semi-analytic methods, considering the effects of disk winds, radiation pressure, photoevaporation and stellar winds, while following protostellar evolution in collapsing massive gas cores. We find that disk winds are the dominant feedback mechanism setting star formation efficiencies (SFEs) from initial cores of ~0.3-0.5. However, radiation pressure is also significant to widen the outflow cavity causing reductions of SFE compared to the disk-wind only case, especially for >100Msun star formation at clump mass surface densities Sigma<0.3g/cm2. Photoevaporation is of relatively minor importance due to dust attenuation of ionizing photons. Stellar winds have even smaller effects during the accretion stage. For core masses Mc~10-1000Msun and Sigma~0.1-3g/cm2, we find the overall SFE to be 0.31(Rc/0.1pc)^{-0.39}, potentially a useful sub-grid star-formation model in simulations that can resolve pre-stellar core radii, Rc=0.057(Mc/60Msun)^{1/2}(Sigma/g/cm2)^{-1/2}pc. The decline of SFE with Mc is gradual with no evidence for a maximum stellar-mass set by feedback processes up to stellar masses of ~300Msun. We thus conclude that the observed truncation of the high-mass end of the IMF is shaped mostly by the pre-stellar core mass function or internal stellar processes. To form massive stars with the observed maximum masses of ~150-300Msun, initial core masses need to be >500-1000Msun. We also apply our feedback model to zero-metallicity primordial star formation, showing that, in the absence of dust, photoevaporation staunches accretion at ~50Msun. Our model implies radiative feedback is most significant at metallicities ~10^{-2}Zsun, since both radiation pressure and photoevaporation are effective in this regime.
We aim to investigate the impact of the ionized radiation from the M16 HII region on the surrounding molecular cloud and on its hosted star formation. To present comprehensive multi-wavelength observations towards the M16 HII region, we used new CO data and existing infrared, optical, and submillimeter data. The 12CO J=1-0, 13CO J=1-0, and C18O J=1-0 data were obtained with the Purple Mountain Observatory (PMO) 13.7m radio telescope. To trace massive clumps and extract young stellar objects (YSOs) associated with the M16 HII region, we used the ATLASGAL and GLIMPSE I catalogs, respectively. From CO data, we discern a large-scale filament with three velocity components. Because these three components overlap with each other in both velocity and space, the filament may be made of three layers. The M16 ionized gas interacts with the large-scale filament and has reshaped its structure. In the large-scale filament, we find 51 compact cores from the ATLASGAL catalog, 20 of them being quiescent. The mean excitation temperature of these cores is 22.5 K, while this is 22.2 K for the quiescent cores. This high temperature observed for the quiescent cores suggests that the cores may be heated by M16 and do not experience internal heating from sources in the cores. Through the relationship between the mass and radius of these cores, we obtain that 45% of all the cores are massive enough to potentially form massive stars. Compared with the thermal motion, the turbulence created by the nonthermal motion is responsible for the core formation. For the pillars observed towards M16, the H II region may give rise to the strong turbulence.
210 - Greg Stinson 2009
Stellar population studies show that low mass galaxies in all environments exhibit stellar halos that are older and more spherically distributed than the main body of the galaxy. In some cases, there is a significant intermediate age component that extends beyond the young disk. We examine a suite of Smoothed Particle Hydrodynamic (SPH) simulations and find that elevated early star formation activity combined with supernova feedback can produce an extended stellar distribution that resembles these halos for model galaxies ranging from $v_{200}$ = 15 km s$^{-1}$ to 35 km s$^{-1}$, without the need for accretion of subhalos.
Direct N-body calculations are presented of the early evolution of exposed clusters to quantify the influence of gas expulsion on the time-varying surface brightness. By assuming that the embedded OB stars drive out most of the gas after a given time delay, the change of the surface brightness of expanding star clusters is studied. The influence of stellar dynamics and stellar evolution is discussed. The growth of the core radii of such models shows a remarkable core re-virialisation. The decrease of the surface mass density during gas expulsion is large and is only truncated by this re-virialisation process. However, the surface brightness within a certain radius does not increase noticeably. Thus, an embedded star cluster cannot reappear in observational surveys after re-virialisation. This finding has a bearing on the observed infant mortality fraction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا