Do you want to publish a course? Click here

Colorado in Context: Congressional Redistricting and Competing Fairness Criteria in Colorado

50   0   0.0 ( 0 )
 Added by Jeanne N. Clelland
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, we apply techniques of ensemble analysis to understand the political baseline for Congressional representation in Colorado. We generate a large random sample of reasonable redistricting plans and determine the partisan balance of each district using returns from state-wide elections in 2018, and analyze the 2011/2012 enacted districts in this context. Colorado recently adopted a new framework for redistricting, creating an independent commission to draw district boundaries, prohibiting partisan bias and incumbency considerations, requiring that political boundaries (such as counties) be preserved as much as possible, and also requiring that mapmakers maximize the number of competitive districts. We investigate the relationships between partisan outcomes, number of counties which are split, and number of competitive districts in a plan. This paper also features two novel improvements in methodology--a more rigorous statistical framework for understanding necessary sample size, and a weighted-graph method for generating random plans which split approximately as few counties as acceptable human-drawn maps.



rate research

Read More

In the past few decades, constitution-making processes have shifted from closed elite writing to incorporating democratic mechanisms. Yet, little is known about democratic participation in deliberative constitution-making processes. Here, we study a deliberative constituent process held by the Chilean government between 2015 and 2016. The Chilean process had the highest level of citizen participation in the world ($204,402$ people, i.e., $1.3%$ of the population) for such a process and covered $98%$ of the national territory. In its participatory phase, people gathered in self-convoked groups of 10 to 30 members, and they collectively selected, deliberated, and wrote down an argument on why the new constitution should include those social rights. To understand the citizen participation drivers in this volunteer process, we first identify the determinants at the municipality level. We find the educational level, engagement in politics, support for the (left-wing) government, and Internet access increased participation. In contrast, population density and the share of evangelical Christians decreased participation. Moreover, we do not find evidence of political manipulation on citizen participation. In light of those determinants, we analyze the collective selection of social rights, and the content produced during the deliberative phase. The findings suggest that the knowledge embedded in cities, proxied using education levels and main economic activity, facilitates deliberation about themes, concepts, and ideas. These results can inform the organization of new deliberative processes that involve voluntary citizen participation, from citizen consultations to constitution-making processes.
We here study the behavior of political party members aiming at identifying how ideological communities are created and evolve over time in diverse (fragmented and non-fragmented) party systems. Using public voting data of both Brazil and the US, we propose a methodology to identify and characterize ideological communities, their member polarization, and how such communities evolve over time, covering a 15-year period. Our results reveal very distinct patterns across the two case studies, in terms of both structural and dynamic properties.
Reliable and validated assessments of introductory physics have been instrumental in driving curricular and pedagogical reforms that lead to improved student learning. As part of an effort to systematically improve our sophomore-level Classical Mechanics and Math Methods course (CM 1) at CU Boulder, we have developed a tool to assess student learning of CM 1 concepts in the upper-division. The Colorado Classical Mechanics/Math Methods Instrument (CCMI) builds on faculty consensus learning goals and systematic observations of student difficulties. The result is a 9-question open-ended post-test that probes student learning in the first half of a two-semester classical mechanics / math methods sequence. In this paper, we describe the design and development of this instrument, its validation, and measurements made in classes at CU Boulder and elsewhere.
Impossibility results show that important fairness measures (independence, separation, sufficiency) cannot be satisfied at the same time under reasonable assumptions. This paper explores whether we can satisfy and/or improve these fairness measures simultaneously to a certain degree. We introduce information-theoretic formulations of the fairness measures and define degrees of fairness based on these formulations. The information-theoretic formulations suggest unexplored theoretical relations between the three fairness measures. In the experimental part, we use the information-theoretic expressions as regularizers to obtain fairness-regularized predictors for three standard datasets. Our experiments show that a) fairness regularization directly increases fairness measures, in line with existing work, and b) some fairness regularizations indirectly increase other fairness measures, as suggested by our theoretical findings. This establishes that it is possible to increase the degree to which some fairness measures are satisfied at the same time -- some fairness measures are gradually compatible.
60 - Geoff Boeing 2020
This paper was presented as the 8th annual Transactions in GIS plenary address at the American Association of Geographers annual meeting in Washington, DC. The spatial sciences have recently seen growing calls for more accessible software and tools that better embody geographic science and theory. Urban spatial network science offers one clear opportunity: from multiple perspectives, tools to model and analyze nonplanar urban spatial networks have traditionally been inaccessible, atheoretical, or otherwise limiting. This paper reflects on this state of the field. Then it discusses the motivation, experience, and outcomes of developing OSMnx, a tool intended to help address this. Next it reviews this tools use in the recent multidisciplinary spatial network science literature to highlight upstream and downstream benefits of open-source software development. Tool-building is an essential but poorly incentivized component of academic geography and social science more broadly. To conduct better science, we need to build better tools. The paper concludes with paths forward, emphasizing open-source software and reusable computational data science beyond mere reproducibility and replicability.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا