Do you want to publish a course? Click here

Blacklight: Defending Black-Box Adversarial Attacks on Deep Neural Networks

85   0   0.0 ( 0 )
 Added by Huiying Li
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The vulnerability of deep neural networks (DNNs) to adversarial examples is well documented. Under the strong white-box threat model, where attackers have full access to DNN internals, recent work has produced continual advancements in defenses, often followed by more powerful attacks that break them. Meanwhile, research on the more realistic black-box threat model has focused almost entirely on reducing the query-cost of attacks, making them increasingly practical for ML models already deployed today. This paper proposes and evaluates Blacklight, a new defense against black-box adversarial attacks. Blacklight targets a key property of black-box attacks: to compute adversarial examples, they produce sequences of highly similar images while trying to minimize the distance from some initial benign input. To detect an attack, Blacklight computes for each query image a compact set of one-way hash values that form a probabilistic fingerprint. Variants of an image produce nearly identical fingerprints, and fingerprint generation is robust against manipulation. We evaluate Blacklight on 5 state-of-the-art black-box attacks, across a variety of models and classification tasks. While the most efficient attacks take thousands or tens of thousands of queries to complete, Blacklight identifies them all, often after only a handful of queries. Blacklight is also robust against several powerful countermeasures, including an optimal black-box attack that approximates white-box attacks in efficiency. Finally, Blacklight significantly outperforms the only known alternative in both detection coverage of attack queries and resistance against persistent attackers.

rate research

Read More

176 - Siyue Wang , Xiao Wang , Pu Zhao 2018
Deep neural networks (DNNs) are known vulnerable to adversarial attacks. That is, adversarial examples, obtained by adding delicately crafted distortions onto original legal inputs, can mislead a DNN to classify them as any target labels. This work provides a solution to hardening DNNs under adversarial attacks through defensive dropout. Besides using dropout during training for the best test accuracy, we propose to use dropout also at test time to achieve strong defense effects. We consider the problem of building robust DNNs as an attacker-defender two-player game, where the attacker and the defender know each others strategies and try to optimize their own strategies towards an equilibrium. Based on the observations of the effect of test dropout rate on test accuracy and attack success rate, we propose a defensive dropout algorithm to determine an optimal test dropout rate given the neural network model and the attackers strategy for generating adversarial examples.We also investigate the mechanism behind the outstanding defense effects achieved by the proposed defensive dropout. Comparing with stochastic activation pruning (SAP), another defense method through introducing randomness into the DNN model, we find that our defensive dropout achieves much larger variances of the gradients, which is the key for the improved defense effects (much lower attack success rate). For example, our defensive dropout can reduce the attack success rate from 100% to 13.89% under the currently strongest attack i.e., C&W attack on MNIST dataset.
Deep neural networks (DNNs) have been proven vulnerable to backdoor attacks, where hidden features (patterns) trained to a normal model, which is only activated by some specific input (called triggers), trick the model into producing unexpected behavior. In this paper, we create covert and scattered triggers for backdoor attacks, invisible backdoors, where triggers can fool both DNN models and human inspection. We apply our invisible backdoors through two state-of-the-art methods of embedding triggers for backdoor attacks. The first approach on Badnets embeds the trigger into DNNs through steganography. The second approach of a trojan attack uses two types of additional regularization terms to generate the triggers with irregular shape and size. We use the Attack Success Rate and Functionality to measure the performance of our attacks. We introduce two novel definitions of invisibility for human perception; one is conceptualized by the Perceptual Adversarial Similarity Score (PASS) and the other is Learned Perceptual Image Patch Similarity (LPIPS). We show that the proposed invisible backdoors can be fairly effective across various DNN models as well as four datasets MNIST, CIFAR-10, CIFAR-100, and GTSRB, by measuring their attack success rates for the adversary, functionality for the normal users, and invisibility scores for the administrators. We finally argue that the proposed invisible backdoor attacks can effectively thwart the state-of-the-art trojan backdoor detection approaches, such as Neural Cleanse and TABOR.
133 - Kaidi Xu , Sijia Liu , Pin-Yu Chen 2020
Although deep neural networks (DNNs) have achieved a great success in various computer vision tasks, it is recently found that they are vulnerable to adversarial attacks. In this paper, we focus on the so-called textit{backdoor attack}, which injects a backdoor trigger to a small portion of training data (also known as data poisoning) such that the trained DNN induces misclassification while facing examples with this trigger. To be specific, we carefully study the effect of both real and synthetic backdoor attacks on the internal response of vanilla and backdoored DNNs through the lens of Gard-CAM. Moreover, we show that the backdoor attack induces a significant bias in neuron activation in terms of the $ell_infty$ norm of an activation map compared to its $ell_1$ and $ell_2$ norm. Spurred by our results, we propose the textit{$ell_infty$-based neuron pruning} to remove the backdoor from the backdoored DNN. Experiments show that our method could effectively decrease the attack success rate, and also hold a high classification accuracy for clean images.
Recent work has shown how easily white-box adversarial attacks can be applied to state-of-the-art image classifiers. However, real-life scenarios resemble more the black-box adversarial conditions, lacking transparency and usually imposing natural, hard constraints on the query budget. We propose $textbf{EvoBA}$, a black-box adversarial attack based on a surprisingly simple evolutionary search strategy. $textbf{EvoBA}$ is query-efficient, minimizes $L_0$ adversarial perturbations, and does not require any form of training. $textbf{EvoBA}$ shows efficiency and efficacy through results that are in line with much more complex state-of-the-art black-box attacks such as $textbf{AutoZOOM}$. It is more query-efficient than $textbf{SimBA}$, a simple and powerful baseline black-box attack, and has a similar level of complexity. Therefore, we propose it both as a new strong baseline for black-box adversarial attacks and as a fast and general tool for gaining empirical insight into how robust image classifiers are with respect to $L_0$ adversarial perturbations. There exist fast and reliable $L_2$ black-box attacks, such as $textbf{SimBA}$, and $L_{infty}$ black-box attacks, such as $textbf{DeepSearch}$. We propose $textbf{EvoBA}$ as a query-efficient $L_0$ black-box adversarial attack which, together with the aforementioned methods, can serve as a generic tool to assess the empirical robustness of image classifiers. The main advantages of such methods are that they run fast, are query-efficient, and can easily be integrated in image classifiers development pipelines. While our attack minimises the $L_0$ adversarial perturbation, we also report $L_2$, and notice that we compare favorably to the state-of-the-art $L_2$ black-box attack, $textbf{AutoZOOM}$, and of the $L_2$ strong baseline, $textbf{SimBA}$.
Although deep neural networks (DNNs) have made rapid progress in recent years, they are vulnerable in adversarial environments. A malicious backdoor could be embedded in a model by poisoning the training dataset, whose intention is to make the infected model give wrong predictions during inference when the specific trigger appears. To mitigate the potential threats of backdoor attacks, various backdoor detection and defense methods have been proposed. However, the existing techniques usually require the poisoned training data or access to the white-box model, which is commonly unavailable in practice. In this paper, we propose a black-box backdoor detection (B3D) method to identify backdoor attacks with only query access to the model. We introduce a gradient-free optimization algorithm to reverse-engineer the potential trigger for each class, which helps to reveal the existence of backdoor attacks. In addition to backdoor detection, we also propose a simple strategy for reliable predictions using the identified backdoored models. Extensive experiments on hundreds of DNN models trained on several datasets corroborate the effectiveness of our method under the black-box setting against various backdoor attacks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا