No Arabic abstract
Quantum walks are processes that model dynamics in coherent systems. Their experimental implementations proved key to unveil novel phenomena in Floquet topological insulators. Here we realize a photonic quantum walk in the presence of a synthetic gauge field, which mimics the action of an electric field on a charged particle. By tuning the energy gaps between the two quasi-energy bands, we investigate intriguing system dynamics characterized by the interplay between Bloch oscillations and Landau-Zener transitions. When both gaps at quasi-energy values 0 and $pi$ are vanishingly small, the Floquet dynamics follows a ballistic spreading.
Non-Bloch topological invariants preserve the bulk-boundary correspondence in non-Hermitian topological systems, and are a key concept in the contemporary study of non-Hermitian topology. Here we report the dynamic detection of non-Bloch topological invariants in single-photon quantum walks, revealed through the biorthogonal chiral displacement, and crosschecked with the dynamic spin textures in the generalized quasimomentum-time domain following a quantum quench. Both detection schemes are robust against symmetry-preserving disorders, and yield consistent results with theoretical predictions. Our experiments are performed far away from any boundaries, and therefore underline non-Bloch topological invariants as intrinsic properties of the system that persist in the thermodynamic limit. Our work sheds new light on the experimental investigation of non-Hermitian topology.
We study the Landau-Zener dynamics of a tunneling spin coupled to a torsional resonator. For strong spin-phonon coupling, when the oscillator frequency is large compared to the tunnel splitting, the system exhibits multiple Landau-Zener transitions. Entanglement of spin and mechanical angular momentum results in abrupt changes of oscillator dynamics which coincide in time with spin transitions. We show that a large number of spins on a single oscillator coupled only through the in-phase phonon field behaves as a single large spin, greatly enhancing the spin-phonon coupling. We compare purely quantum and semiclassical dynamics of the system and discuss their experimental realizations. An experiment is proposed in which the field sweep is used to read out the exact quantum state of the mechanical resonator.
We demonstrate that a weakly disordered metal with short-range interactions exhibits a transition in the quantum chaotic dynamics when changing the temperature or the interaction strength. For weak interactions, the system displays exponential growth of the out-of-time-ordered correlator (OTOC) of the current operator. The Lyapunov exponent of this growth is temperature-independent in the limit of vanishing interaction. With increasing the temperature or the interaction strength, the system undergoes a transition to a non-chaotic behaviour, for which the exponential growth of the OTOC is absent. We conjecture that the transition manifests itself in the quasiparticle energy-level statistics and also discuss ways of its explicit observation in cold-atom setups.
Non-Hermitian systems can host topological states with novel topological invariants and bulk-edge correspondences that are distinct from conventional Hermitian systems. Here we show that two unique classes of non-Hermitian 2D topological phases, a 2$mathbb{Z}$ non-Hermitian Chern insulator and a $mathbb{Z}_{2}$ topological semimetal, can be realized by tuning staggered asymmetric hopping strengths in a 1D superlattice. These non-Hermitian topological phases support real edge modes due to robust $mathcal{PT}$-symmetric-like spectra and can coexist in certain parameter regime. The proposed phases can be experimentally realized in photonic or atomic systems and may open an avenue for exploring novel classes of non-Hermitian topological phases with 1D superlattices.
The universal quantum computation model based on quantum walk by Childs has opened the door for a new way of studying the limitations and advantages of quantum computation, as well as for its intermediate-term simulation. In recent years, the growing interest in noisy intermediate-scale quantum computers (NISQ) has lead to intense efforts being directed at understanding the computational advantages of open quantum systems. In this work, we extend the quantum walk model to open noisy systems in order to provide such a tool for the study of NISQ computers. Our method does not use explicit purification, and allows to ignore the environment degrees of freedom and get direct and much more efficient access to the entanglement properties of the system. In our representation, the quantum walk amplitudes represent elements in a density matrix rather than the wavefunction of a pure state. Despite the non-trivial manifestation of the normalization requirement in this setting, we model the application of general unitary gates and nonunitary channels, with an explicit implementation protocol for channels that are commonly used in noise models.