No Arabic abstract
We demonstrate that a weakly disordered metal with short-range interactions exhibits a transition in the quantum chaotic dynamics when changing the temperature or the interaction strength. For weak interactions, the system displays exponential growth of the out-of-time-ordered correlator (OTOC) of the current operator. The Lyapunov exponent of this growth is temperature-independent in the limit of vanishing interaction. With increasing the temperature or the interaction strength, the system undergoes a transition to a non-chaotic behaviour, for which the exponential growth of the OTOC is absent. We conjecture that the transition manifests itself in the quasiparticle energy-level statistics and also discuss ways of its explicit observation in cold-atom setups.
We study the collective excitations, i.e., the Goldstone (phase) mode and the Higgs (amplitude) mode, near the superfluid--Mott glass quantum phase transition in a two-dimensional system of disordered bosons. Using Monte Carlo simulations as well as an inhomogeneous quantum mean-field theory with Gaussian fluctuations, we show that the Higgs mode is strongly localized for all energies, leading to a noncritical scalar response. In contrast, the lowest-energy Goldstone mode undergoes a striking delocalization transition as the system enters the superfluid phase. We discuss the generality of these findings and experimental consequences, and we point out potential relations to many-body localization.
Bulk-boundary correspondence, a central principle in topological matter relating bulk topological invariants to edge states, breaks down in a generic class of non-Hermitian systems that have so far eluded experimental effort. Here we theoretically predict and experimentally observe non-Hermitian bulk-boundary correspondence, a fundamental generalization of the conventional bulk-boundary correspondence, in discrete-time non-unitary quantum-walk dynamics of single photons. We experimentally demonstrate photon localizations near boundaries even in the absence of topological edge states, thus confirming the non-Hermitian skin effect. Facilitated by our experimental scheme of edge-state reconstruction, we directly measure topological edge states, which match excellently with non-Bloch topological invariants calculated from localized bulk-state wave functions. Our work unequivocally establishes the non-Hermitian bulk-boundary correspondence as a general principle underlying non-Hermitian topological systems, and paves the way for a complete understanding of topological matter in open systems.
We study the quench dynamics of a topological $p$-wave superfluid with two competing order parameters, $Delta_pm(t)$. When the system is prepared in the $p+ip$ ground state and the interaction strength is quenched, only $Delta_+(t)$ is nonzero. However, we show that fluctuations in the initial conditions result in the growth of $Delta_-(t)$ and chaotic oscillations of both order parameters. We term this behavior phase III. In addition, there are two other types of late time dynamics -- phase I where both order parameters decay to zero and phase II where $Delta_+(t)$ asymptotes to a nonzero constant while $Delta_-(t)$ oscillates near zero. Although the model is nonintegrable, we are able to map out the exact phase boundaries in parameter space. Interestingly, we find phase III is unstable with respect to breaking the time reversal symmetry of the interaction. When one of the order parameters is favored in the Hamiltonian, the other one rapidly vanishes and the previously chaotic phase III is replaced by the Floquet topological phase III that is seen in the integrable chiral $p$-wave model.
The spin-crossover in organometallic molecules constitutes one of the most promising routes towards the realization of molecular spintronic devices. In this article, we explore the hybridization-induced spin-crossover in metal-organic complexes. We propose a minimal many-body model that captures the essence of the spin-state switching in a generic parameter space, thus providing insight into the underlying physics. Combining the model with density functional theory (DFT), we then study the spin-crossover in isomeric structures of Ni-porphyrin (Ni-TPP). We show that metal-ligand charge transfer plays a crucial role in the determination of the spin-state in Ni-TPP. Finally, we propose a spin-crossover mechanism based on mechanical strain, which does not require a switch between isomeric structures.
We propose to engineer time-reversal-invariant topological insulators in two-dimensional (2D) crystals of transition metal dichalcogenides (TMDCs). We note that, at low doping, semiconducting TMDCs under shear strain will develop spin-polarized Landau levels residing in different valleys. We argue that gaps between Landau levels in the range of $10-100$ Kelvin are within experimental reach. In addition, we point out that a superlattice arising from a Moire pattern can lead to topologically non-trivial subbands. As a result, the edge transport becomes quantized, which can be probed in multi-terminal devices made using strained 2D crystals and/or heterostructures. The strong $d$ character of valence and conduction bands may also allow for the investigation of the effects of electron correlations on the topological phases.