Do you want to publish a course? Click here

Learned Equivariant Rendering without Transformation Supervision

103   0   0.0 ( 0 )
 Added by Cinjon Resnick
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We propose a self-supervised framework to learn scene representations from video that are automatically delineated into objects and background. Our method relies on moving objects being equivariant with respect to their transformation across frames and the background being constant. After training, we can manipulate and render the scenes in real time to create unseen combinations of objects, transformations, and backgrounds. We show results on moving MNIST with backgrounds.



rate research

Read More

Establishing correspondences between 3D shapes is a fundamental task in 3D Computer Vision, typically addressed by matching local descriptors. Recently, a few attempts at applying the deep learning paradigm to the task have shown promising results. Yet, the only explored way to learn rotation invariant descriptors has been to feed neural networks with highly engineered and invariant representations provided by existing hand-crafted descriptors, a path that goes in the opposite direction of end-to-end learning from raw data so successfully deployed for 2D images. In this paper, we explore the benefits of taking a step back in the direction of end-to-end learning of 3D descriptors by disentangling the creation of a robust and distinctive rotation equivariant representation, which can be learned from unoriented input data, and the definition of a good canonical orientation, required only at test time to obtain an invariant descriptor. To this end, we leverage two recent innovations: spherical convolutional neural networks to learn an equivariant descriptor and plane folding decoders to learn without supervision. The effectiveness of the proposed approach is experimentally validated by outperforming hand-crafted and learned descriptors on a standard benchmark.
Learning-based 3D reconstruction methods have shown impressive results. However, most methods require 3D supervision which is often hard to obtain for real-world datasets. Recently, several works have proposed differentiable rendering techniques to train reconstruction models from RGB images. Unfortunately, these approaches are currently restricted to voxel- and mesh-based representations, suffering from discretization or low resolution. In this work, we propose a differentiable rendering formulation for implicit shape and texture representations. Implicit representations have recently gained popularity as they represent shape and texture continuously. Our key insight is that depth gradients can be derived analytically using the concept of implicit differentiation. This allows us to learn implicit shape and texture representations directly from RGB images. We experimentally show that our single-view reconstructions rival those learned with full 3D supervision. Moreover, we find that our method can be used for multi-view 3D reconstruction, directly resulting in watertight meshes.
Many real-world tasks require models to compare images along multiple similarity conditions (e.g. similarity in color, category or shape). Existing methods often reason about these complex similarity relationships by learning condition-aware embeddings. While such embeddings aid models in learning different notions of similarity, they also limit their capability to generalize to unseen categories since they require explicit labels at test time. To address this deficiency, we propose an approach that jointly learns representations for the different similarity conditions and their contributions as a latent variable without explicit supervision. Comprehensive experiments across three datasets, Polyvore-Outfits, Maryland-Polyvore and UT-Zappos50k, demonstrate the effectiveness of our approach: our model outperforms the state-of-the-art methods, even those that are strongly supervised with pre-defined similarity conditions, on fill-in-the-blank, outfit compatibility prediction and triplet prediction tasks. Finally, we show that our model learns different visually-relevant semantic sub-spaces that allow it to generalize well to unseen categories.
We propose a novel method to reconstruct volumetric flows from sparse views via a global transport formulation. Instead of obtaining the space-time function of the observations, we reconstruct its motion based on a single initial state. In addition we introduce a learned self-supervision that constrains observations from unseen angles. These visual constraints are coupled via the transport constraints and a differentiable rendering step to arrive at a robust end-to-end reconstruction algorithm. This makes the reconstruction of highly realistic flow motions possible, even from only a single input view. We show with a variety of synthetic and real flows that the proposed global reconstruction of the transport process yields an improved reconstruction of the fluid motion.
Deep learning-based methods have achieved remarkable success in image restoration and enhancement, but are they still competitive when there is a lack of paired training data? As one such example, this paper explores the low-light image enhancement problem, where in practice it is extremely challenging to simultaneously take a low-light and a normal-light photo of the same visual scene. We propose a highly effective unsupervised generative adversarial network, dubbed EnlightenGAN, that can be trained without low/normal-light image pairs, yet proves to generalize very well on various real-world test images. Instead of supervising the learning using ground truth data, we propose to regularize the unpaired training using the information extracted from the input itself, and benchmark a series of innovations for the low-light image enhancement problem, including a global-local discriminator structure, a self-regularized perceptual loss fusion, and attention mechanism. Through extensive experiments, our proposed approach outperforms recent methods under a variety of metrics in terms of visual quality and subjective user study. Thanks to the great flexibility brought by unpaired training, EnlightenGAN is demonstrated to be easily adaptable to enhancing real-world images from various domains. The code is available at url{https://github.com/yueruchen/EnlightenGAN}
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا