Do you want to publish a course? Click here

Quantumness and thermodynamic uncertainty relation of finite-time Otto cycle

90   0   0.0 ( 0 )
 Added by Hawoong Jeong
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

To reveal the role of the quantumness in the Otto cycle and to discuss the validity of the thermodynamic uncertainty relation (TUR) in the cycle, we study the quantum Otto cycle and its classical counterpart. In particular, we calculate exactly the mean values and relative error of thermodynamic quantities. In the quasistatic limit, quantumness reduces the productivity and precision of the Otto cycle compared to that in the absence of quantumness, whereas in the finite-time mode, it can increase the cycles productivity and precision. Interestingly, as the strength (heat conductance) between the system and the bath increases, the precision of the quantum Otto cycle overtakes that of the classical one. Testing the conventional TUR of the Otto cycle, in the region where the entropy production is large enough, we find a tighter bound than that of the conventional TUR. However, in the finite-time mode, both quantum and classical Otto cycles violate the conventional TUR in the region where the entropy production is small. This implies that another modified TUR is required to cover the finite-time Otto cycle. Finally, we discuss the possible origin of this violation in terms of the uncertainty products of the thermodynamic quantities and the relative error near resonance conditions.



rate research

Read More

158 - Junjie Liu , Dvira Segal 2019
Recently, a thermodynamic uncertainty relation (TUR) has been formulated for classical Markovian systems demonstrating trade-off between precision (current fluctuation) and cost (dissipation). Systems that violate the TUR are interesting as they overcome another trade-off relation concerning the efficiency of a heat engine, its power, and its stability (power fluctuations). Here, we analyze the root, extent, and impact on performance of TUR violations in quantum thermoelectric junctions at steady state. Considering noninteracting electrons, first we show that only the classical component of the current noise, arising from single-electron transfer events follows the TUR. The remaining, quantum part of current noise is therefore responsible for the potential violation of TUR in such quantum systems. Next, focusing on the resonant transport regime we determine the parameter range in which the violation of the TUR can be observed---for both voltage-biased junctions and thermoelectric engines. We illustrate our findings with exact numerical simulations of a serial double quantum dot system. Most significantly, we demonstrate that the TUR always holds in noninteracting thermoelectric generators when approaching the thermodynamic efficiency limit.
The thermodynamic uncertainty relation (TUR) is expected to hold in nanoscale electronic conductors, when the electron transport process is quantum coherent and the transmission probability is constant (energy and voltage independent). We present measurements of the electron current and its noise in gold atomic-scale junctions and confirm the validity of the TUR for electron transport in realistic quantum coherent conductors. Furthermore, we show that it is beneficial to present the current and its noise as a TUR ratio in order to identify deviations from noninteracting-electron coherent dynamics.
We study a quantum Otto engine at finite time, where the working substance is composed of a two-level system interacting with a harmonic oscillator, described by the quantum Rabi model. We obtain the limit cycle and calculate the total work extracted, efficiency, and power of the engine by numerically solving the master equation describing the open system dynamics. We relate the total work extracted and the efficiency at maximum power with the quantum correlations embedded in the working substance, which we consider through entanglement of formation and quantum discord. Interestingly, we find that the engine can overcome the Curzon-Ahlborn efficiency when the working substance is in the ultrastrong coupling regime. This high-efficiency regime roughly coincides with the cases where the entanglement in the working substance experiences the greatest reduction in the hot isochoric stage. Our results highlight the efficiency performance of correlated working substances for quantum heat engines.
We review the trade-offs between speed, fluctuations, and thermodynamic cost involved with biological processes in nonequilibrium states, and discuss how optimal these processes are in light of the universal bound set by the thermodynamic uncertainty relation (TUR). The values of the uncertainty product $mathcal{Q}$ of TUR, which can be used as a measure of the precision of enzymatic processes realized for a given thermodynamic cost, are suboptimal when the substrate concentration $[S]$ is at the Michaelis constant ($K_text{M}$), and some of the key biological processes are found to work around this condition. We illustrate the utility of $mathcal{Q}$ in assessing how close the molecular motors and biomass producing machineries are to the TUR bound, and for the cases of biomass production (or biological copying processes) we discuss how their optimality quantified in terms of $mathcal{Q}$ is balanced with the error rate in the information transfer process. We also touch upon the trade-offs in other error-minimizing processes in biology, such as gene regulation and chaperone-assisted protein folding. A spectrum of $mathcal{Q}$ recapitulating the biological processes surveyed here provides glimpses into how biological systems are evolved to optimize and balance the conflicting functional requirements.
We derive the probability distribution of the efficiency of a quantum Otto engine. We explicitly compute the quantum efficiency statistics for an analytically solvable two-level engine. We analyze the occurrence of values of the stochastic efficiency above unity, in particular at infinity, in the nonadiabatic regime and further determine mean and variance in the case of adiabatic driving. We finally investigate the classical-to-quantum transition as the temperature is lowered.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا