Do you want to publish a course? Click here

Optical properties of silicon-implanted polycrystalline diamond membranes

103   0   0.0 ( 0 )
 Added by Mario Agio
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the optical properties of polycrystalline diamond membranes containing silicon-vacancy (SiV) color centers in combination with other nano-analytical techniques. We analyze the correlation between the Raman signal, the SiV emission, and the background luminescence in the crystalline grains and in the grain boundaries, identifying conditions for the addressability of single SiV centers. Moreover, we perform a scanning transmission electron microscopy (STEM) analysis, which associates the microscopic structure of the membranes and the evolution of the diamond crystal along the growth direction with the photoluminescence properties, as well as a time-of-flight secondary ion mass spectrometry (ToF-SIMS) to address the distribution of silicon in implanted and un-implanted membranes. The results of the STEM and ToF-SIMS studies are consistent with the outcome of the optical measurements and provide useful insight into the preparation of polycrystalline samples for quantum nano-optics.



rate research

Read More

We have measured the optical and mechanical loss of commercial silicon nitride membranes. We find that 50 nm-thick, 1 mm^2 membranes have mechanical Q > 10^6 at 293 K, and Q > 10^7 at 300 mK, well above what has been observed in devices with comparable dimensions. The near-IR optical loss at 293 K is less than 2E-4. This combination of properties make these membranes attractive candidates for studying quantum effects in optomechanical systems.
102 - K. Bray , H. Kato , R. Previdi 2017
Single crystal, nanoscale diamond membranes are highly sought after for a variety of applications including nanophotonics, nanoelectronics and quantum information science. However, so far, the availability of conductive diamond membranes remained an unreachable goal. In this work we present a complete nanofabrication methodology for engineering high aspect ratio, electrically active single crystal diamond membranes. The membranes have large lateral directions, exceeding 500x500 um2 and are only several hundreds of nanometers thick. We further realize vertical single crystal p-n junctions, made from the diamond membranes that exhibit onset voltages of ~ 10V and a current of several mA. Moreover, we deterministically introduce optically active color centers into the membranes, and demonstrate for the first time a single crystal nanoscale diamond LED. The robust and scalable approach to engineer the electrically active single crystal diamond membranes, offers new pathways for advanced nanophotonics, nanoelectronics and optomechanics devices employing diamond.
We addressed the carrier dynamics in so-called G-centers in silicon (consisting of substitutional-interstitial carbon pairs interacting with interstitial silicons) obtained via ion implantation into a silicon-on-insulator wafer. For this point defect in silicon emitting in the telecommunication wavelength range, we unravel the recombination dynamics by time-resolved photoluminescence spectroscopy. More specifically, we performed detailed photoluminescence experiments as a function of excitation energy, incident power, irradiation fluence and temperature in order to study the impact of radiative and non-radiative recombination channels on the spectrum, yield and lifetime of G-centers. The sharp line emitting at 969 meV ($sim$1280 nm) and the broad asymmetric sideband developing at lower energy share the same recombination dynamics as shown by time-resolved experiments performed selectively on each spectral component. This feature accounts for the common origin of the two emission bands which are unambiguously attributed to the zero-phonon line and to the corresponding phonon sideband. In the framework of the Huang-Rhys theory with non-perturbative calculations, we reach an estimation of 1.6$pm$0.1 $angstrom$ for the spatial extension of the electronic wave function in the G-center. The radiative recombination time measured at low temperature lies in the 6 ns-range. The estimation of both radiative and non-radiative recombination rates as a function of temperature further demonstrate a constant radiative lifetime. Finally, although G-centers are shallow levels in silicon, we find a value of the Debye-Waller factor comparable to deep levels in wide-bandgap materials. Our results point out the potential of G-centers as a solid-state light source to be integrated into opto-electronic devices within a common silicon platform.
Many promising applications of single crystal diamond and its color centers as sensor platform and in photonics require free-standing membranes with a thickness ranging from several micrometers to the few 100 nm range. In this work, we present an approach to conveniently fabricate such thin membranes with up to about one millimeter in size. We use commercially available diamond plates (thickness 50 $mu$m) in an inductively coupled reactive ion etching process which is based on argon, oxygen and SF$_6$. We thus avoid using toxic, corrosive feed gases and add an alternative to previously presented recipes involving chlorine-based etching steps. Our membranes are smooth (RMS roughness <1 nm) and show moderate thickness variation (central part: <1 $mu$m over $approx ,$200x200 $mu$m$^2$). Due to an improved etch mask geometry, our membranes stay reliably attached to the diamond plate in our chlorine-based as well as SF$_6$-based processes. Our results thus open the route towards higher reliability in diamond device fabrication and up-scaling.
Recently, vacancy-related spin defects in silicon carbide (SiC) have been demonstrated to be potentially suitable for versatile quantum interface building and scalable quantum network construction. Significant efforts have been undertaken to identify spin systems in SiC and to extend their quantum capabilities using large-scale growth and advanced nanofabrication methods. Here we demonstrated a type of spin defect in the 4H polytype of SiC generated via hydrogen ion implantation with high-temperature post-annealing, which is different from any known defects. These spin defects can be optically addressed and coherently controlled even at room temperature, and their fluorescence spectrum and optically detected magnetic resonance spectra are different from those of any previously discovered defects. Moreover, the generation of these defects can be well controlled by optimizing the annealing temperature after implantation. These defects demonstrate high thermal stability with coherently controlled electron spins, facilitating their application in quantum sensing and masers under harsh conditions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا