Do you want to publish a course? Click here

High quality mechanical and optical properties of commercial silicon nitride membranes

127   0   0.0 ( 0 )
 Added by Benjamin Zwickl
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have measured the optical and mechanical loss of commercial silicon nitride membranes. We find that 50 nm-thick, 1 mm^2 membranes have mechanical Q > 10^6 at 293 K, and Q > 10^7 at 300 mK, well above what has been observed in devices with comparable dimensions. The near-IR optical loss at 293 K is less than 2E-4. This combination of properties make these membranes attractive candidates for studying quantum effects in optomechanical systems.



rate research

Read More

Si3N4 is an excellent material for applications of nanophotonics at visible wavelengths due to its wide bandgap and moderately large refractive index (n $approx$ 2.0). We present the fabrication and characterization of Si3N4 photonic crystal nanobeam cavities for coupling to diamond nanocrystals and Nitrogen-Vacancy centers in a cavity QED system. Confocal micro-photoluminescence analysis of the nanobeam cavities demonstrates quality factors up to Q ~ 55,000, which is limited by the resolution of our spectrometer. We also demonstrate coarse tuning of cavity resonances across the 600-700nm range by lithographically scaling the size of fabricated devices. This is an order of magnitude improvement over previous SiNx cavities at this important wavelength range.
In view of the integration of membrane resonators with more complex MEMS structures, we developed a general fabrication procedure for circular shape SiN$_x$ membranes using Deep Reactive Ion Etching (DRIE). Large area and high-stress SiN$_x$ membranes were fabricated and used as optomechanical resonators in a Michelson interferometer and in a Fabry-Perot cavity. The measurements show that the fabrication process preserves both the optical quality and the mechanical quality factor of the membrane.
We investigate the optical properties of polycrystalline diamond membranes containing silicon-vacancy (SiV) color centers in combination with other nano-analytical techniques. We analyze the correlation between the Raman signal, the SiV emission, and the background luminescence in the crystalline grains and in the grain boundaries, identifying conditions for the addressability of single SiV centers. Moreover, we perform a scanning transmission electron microscopy (STEM) analysis, which associates the microscopic structure of the membranes and the evolution of the diamond crystal along the growth direction with the photoluminescence properties, as well as a time-of-flight secondary ion mass spectrometry (ToF-SIMS) to address the distribution of silicon in implanted and un-implanted membranes. The results of the STEM and ToF-SIMS studies are consistent with the outcome of the optical measurements and provide useful insight into the preparation of polycrystalline samples for quantum nano-optics.
198 - Steve Lamoreaux 2008
The recent discovery that silicon nitride membranes can be used as extremely high Q mechanical resonators makes possible a number of novel experiments, which include improved long range vacuum Casimir force measurements, and measurments of the properties of liquid helium below the lambda point. It is noted that in the thermal correction to the Casimir force, the phase velocity of the excitations does not enter, with the force per unit area between parallel plates depending only on the temperature and distance between the plates. Thus it appears as possible to measure the phonon analog of the finite temperature Casimir force in liquid helium.
Resonance properties of nanomechanical resonators based on doubly clamped silicon nanowires, fabricated from silicon-on-insulator and coated with a thin layer of aluminum, were experimentally investigated. Resonance frequencies of the fundamental mode were measured at a temperature of $20,mathrm{mK}$ for nanowires of various sizes using the magnetomotive scheme. The measured values of the resonance frequency agree with the estimates obtained from the Euler-Bernoulli theory. The measured internal quality factor of the $5,mathrm{mu m}$-long resonator, $3.62times10^4$, exceeds the corresponding values of similar resonators investigated at higher temperatures. The structures presented can be used as mass sensors with an expected sensitivity $sim 6 times 10^{-20},mathrm{g},mathrm{Hz}^{-1/2}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا