Do you want to publish a course? Click here

Self-bound droplet clusters in laser-driven Bose-Einstein condensates

70   0   0.0 ( 0 )
 Added by Yongchang Zhang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate a two-dimensional Bose-Einstein condensate that is optically driven via a retro-reflecting mirror, forming a single optical feedback loop. This induces a peculiar type of long-range atomic interaction with highly oscillatory behavior, and we show here how the sign of the underlying interaction potential can be controlled by additional optical elements and external fields. This additional tunability enriches the behavior of the system substantially, and gives rise to a surprising range of new ground states of the condensate. In particular, we find the emergence of self-bound crystals of quantum droplets with various lattice structures, from simple and familiar triangular arrays to complex superlattice structures and crystals with entirely broken rotational symmetry. This includes mesoscopic clusters composed of small numbers of quantum droplets as well as extended crystalline structures. Importantly, such ordered states are entirely self-bound and stable without any external in-plane confinement, having no counterpart to other quantum-gas settings with long-range atomic interactions.



rate research

Read More

Supersolidity - a coexistence of superfluidity and crystalline or amorphous density variations - has been vividly debated ever since its conjecture. While the initial focus was on helium-4, recent experiments uncovered supersolidity in ultra-cold dipolar quantum gases. Here, we propose a new self-bound supersolid phase in a binary mixture of Bose gases with short-range interactions, making use of the non-trivial properties of spin-orbit coupling. We find that a first-order phase transition from a self-bound supersolid stripe phase to a zero-minimum droplet state of the Bose gas occurs as a function of the Rabi coupling strength. These phases are characterized using the momentum distribution, the transverse spin polarization and the superfluid fraction. The critical point of the transition is estimated in an analytical framework. The predicted density-modulated supersolid stripe and zero-minimum droplet phase should be experimentally observable in a binary mixture of $^{39}$K with spin-orbit coupling.
We analyze time-of-flight absorption images obtained with dilute Bose-Einstein con-densates released from shaken optical lattices, both theoretically and experimentally. We argue that weakly interacting, ultracold quantum gases in kilohertz-driven optical potentials constitute equilibrium systems characterized by a steady-state distri-bution of Floquet-state occupation numbers. Our experimental results consistently indicate that a driven ultracold Bose gas tends to occupy a single Floquet state, just as it occupies a single energy eigenstate when there is no forcing. When the driving amplitude is sufficiently high, the Floquet state possessing the lowest mean energy does not necessarily coincide with the Floquet state connected to the ground state of the undriven system. We observe strongly driven Bose gases to condense into the former state under such conditions, thus providing nontrivial examples of dressed matter waves.
Extending the understanding of Bose-Einstein condensate (BEC) physics to new geometries and topologies has a long and varied history in ultracold atomic physics. One such new geometry is that of a bubble, where a condensate would be confined to the surface of an ellipsoidal shell. Study of this geometry would give insight into new collective modes, self-interference effects, topology-dependent vortex behavior, dimensionality crossovers from thick to thin shells, and the properties of condensates pushed into the ultradilute limit. Here we discuss a proposal to implement a realistic experimental framework for generating shell-geometry BEC using radiofrequency dressing of magnetically-trapped samples. Such a tantalizing state of matter is inaccessible terrestrially due to the distorting effect of gravity on experimentally-feasible shell potentials. The debut of an orbital BEC machine (NASA Cold Atom Laboratory, aboard the International Space Station) has enabled the operation of quantum-gas experiments in a regime of perpetual freefall, and thus has permitted the planning of microgravity shell-geometry BEC experiments. We discuss specific experimental configurations, applicable inhomogeneities and other experimental challenges, and outline potential experiments.
69 - S. Lellouch , N. Goldman 2017
Shaking optical lattices in a resonant manner offers an efficient and versatile method to devise artificial gauge fields and topological band structures for ultracold atomic gases. This was recently demonstrated through the experimental realization of the Harper-Hofstadter model, which combined optical superlattices and resonant time-modulations. Adding inter-particle interactions to these engineered band systems is expected to lead to strongly-correlated states with topological features, such as fractional Chern insulators. However, the interplay between interactions and external time-periodic drives typically triggers violent instabilities and uncontrollable heating, hence potentially ruling out the possibility of accessing such intriguing states of matter in experiments. In this work, we study the early-stage parametric instabilities that occur in systems of resonantly-driven Bose-Einstein condensates in optical lattices. We apply and extend an approach based on Bogoliubov theory [PRX 7, 021015 (2017)] to a variety of resonantly-driven band models, from a simple shaken Wannier-Stark ladder to the more intriguing driven-induced Harper-Hofstadter model. In particular, we provide ab initio numerical and analytical predictions for the stability properties of these topical models. This work sheds light on general features that could guide current experiments to stable regimes of operation.
We study the changes in the spatial distribution of vortices in a rotating Bose-Einstein condensate due to an increasing anisotropy of the trapping potential. Once the rotational symmetry is broken, we find that the vortex system undergoes a rich variety of structural changes, including the formation of zig-zag and linear configurations. These spatial re-arrangements are well signaled by the change in the behavior of the vortex-pattern eigenmodes against the anisotropy parameter. The existence of such structural changes opens up possibilities for the coherent exploitation of effective many-body systems based on vortex patterns.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا