No Arabic abstract
Modern quantum experiments provide examples of transport with non-commuting quantities, offering a tool to understand the interplay between thermal and quantum effects. Here we set forth a theory for non-Abelian transport in the linear response regime. We show how transport coefficients obey Onsager reciprocity and identify non-commutativity-induced reductions in the entropy production. As an example, we study heat and squeezing fluxes in bosonic systems, characterizing a set of thermosqueezing coefficients with potential applications in metrology and heat-to-work conversion in the quantum regime.
For open quantum systems coupled to a thermal bath at inverse temperature $beta$, it is well known that under the Born-, Markov-, and secular approximations the system density matrix will approach the thermal Gibbs state with the bath inverse temperature $beta$. We generalize this to systems where there exists a conserved quantity (e.g., the total particle number), where for a bath characterized by inverse temperature $beta$ and chemical potential $mu$ we find equilibration of both temperature and chemical potential. For couplings to multiple baths held at different temperatures and different chemical potentials, we identify a class of systems that equilibrates according to a single hypothetical average but in general non-thermal bath, which may be exploited to generate desired non-thermal states. Under special circumstances the stationary state may be again be described by a unique Boltzmann factor. These results are illustrated by several examples.
The possibility of quantum computation using non-Abelian anyons has been considered for over a decade. However the question of how to obtain and process information about what errors have occurred in order to negate their effects has not yet been considered. This is in stark contrast with quantum computation proposals for Abelian anyons, for which decoding algorithms have been tailor-made for many topological error-correcting codes and error models. Here we address this issue by considering the properties of non-Abelian error correction in general. We also choose a specific anyon model and error model to probe the problem in more detail. The anyon model is the charge submodel of $D(S_3)$. This shares many properties with important models such as the Fibonacci anyons, making our method applicable in general. The error model is a straightforward generalization of those used in the case of Abelian anyons for initial benchmarking of error correction methods. It is found that error correction is possible under a threshold value of $7 %$ for the total probability of an error on each physical spin. This is remarkably comparable with the thresholds for Abelian models.
An important challenge in the field of many-body quantum dynamics is to identify non-ergodic states of matter beyond many-body localization (MBL). Strongly disordered spin chains with non-Abelian symmetry and chains of non-Abelian anyons are natural candidates, as they are incompatible with standard MBL. In such chains, real space renormalization group methods predict a partially localized, non-ergodic regime known as a quantum critical glass (a critical variant of MBL). This regime features a tree-like hierarchy of integrals of motion and symmetric eigenstates with entanglement entropy that scales as a logarithmically enhanced area law. We argue that such tentative non-ergodic states are perturbatively unstable using an analytic computation of the scaling of off-diagonal matrix elements and accessible level spacing of local perturbations. Our results indicate that strongly disordered chains with non-Abelian symmetry display either spontaneous symmetry breaking or ergodic thermal behavior at long times. We identify the relevant length and time scales for thermalization: even if such chains eventually thermalize, they can exhibit non-ergodic dynamics up to parametrically long time scales with a non-analytic dependence on disorder strength.
We prove an upper bound on the diffusivity of a general local and translation invariant quantum Markovian spin system: $D leq D_0 + left(alpha , v_text{LR} tau + beta , xi right) v_text{C}$. Here $v_text{LR}$ is the Lieb-Robinson velocity, $v_text{C}$ is a velocity defined by the current operator, $tau$ is the decoherence time, $xi$ is the range of interactions, $D_0$ is a microscopically determined diffusivity and $alpha$ and $beta$ are precisely defined dimensionless coefficients. The bound constrains quantum transport by quantities that can either be obtained from the microscopic interactions ($D_0, v_text{LR}, v_text{C},xi$) or else determined from independent local non-transport measurements ($tau,alpha,beta$). We illustrate the general result with the case of a spin half XXZ chain with on-site dephasing. Our result generalizes the Lieb-Robinson bound to constrain the sub-ballistic diffusion of conserved densities in a dissipative setting.
We study the quench dynamics in free fermionic systems in the prototypical bipartitioning protocol obtained by joining two semi-infinite subsystems prepared in different states, aiming at understanding the interplay between quantum coherences in space in the initial state and transport properties. Our findings reveal that, under reasonable assumptions, the more correlated the initial state, the slower the transport is. Such statement is first discussed at qualitative level, and then made quantitative by introducing proper measures of correlations and transport ``speed. Moreover, it is supported for fermions on a lattice by an exact solution starting from specific initial conditions, and in the continuous case by the explicit solution for a wider class of physically relevant initial states. In particular, for this class of states, we identify a function, that we dub emph{transition map}, which takes the value of the stationary current as input and gives the value of correlation as output, in a protocol-independent way. As an aside technical result, in the discrete case, we give an expression of the full counting statistics in terms of a continuous kernel for a general correlated domain wall initial state, thus extending the recent results in [Moriya, Nagao and Sasamoto, JSTAT 2019(6):063105] on the one-dimensional XX spin chain.