No Arabic abstract
Semi-supervised video object segmentation (semi-VOS) is widely used in many applications. This task is tracking class-agnostic objects from a given target mask. For doing this, various approaches have been developed based on online-learning, memory networks, and optical flow. These methods show high accuracy but are hard to be utilized in real-world applications due to slow inference time and tremendous complexity. To resolve this problem, template matching methods are devised for fast processing speed but sacrificing lots of performance in previous models. We introduce a novel semi-VOS model based on a template matching method and a temporal consistency loss to reduce the performance gap from heavy models while expediting inference time a lot. Our template matching method consists of short-term and long-term matching. The short-term matching enhances target object localization, while long-term matching improves fine details and handles object shape-changing through the newly proposed adaptive template attention module. However, the long-term matching causes error-propagation due to the inflow of the past estimated results when updating the template. To mitigate this problem, we also propose a temporal consistency loss for better temporal coherence between neighboring frames by adopting the concept of a transition matrix. Our model obtains 79.5% J&F score at the speed of 73.8 FPS on the DAVIS16 benchmark. The code is available in https://github.com/HYOJINPARK/TTVOS.
Significant progress has been made in Video Object Segmentation (VOS), the video object tracking task in its finest level. While the VOS task can be naturally decoupled into image semantic segmentation and video object tracking, significantly much more research effort has been made in segmentation than tracking. In this paper, we introduce tracking-by-detection into VOS which can coherently integrate segmentation into tracking, by proposing a new temporal aggregation network and a novel dynamic time-evolving template matching mechanism to achieve significantly improved performance. Notably, our method is entirely online and thus suitable for one-shot learning, and our end-to-end trainable model allows multiple object segmentation in one forward pass. We achieve new state-of-the-art performance on the DAVIS benchmark without complicated bells and whistles in both speed and accuracy, with a speed of 0.14 second per frame and J&F measure of 75.9% respectively.
Video data is with complex temporal dynamics due to various factors such as camera motion, speed variation, and different activities. To effectively capture this diverse motion pattern, this paper presents a new temporal adaptive module ({bf TAM}) to generate video-specific temporal kernels based on its own feature map. TAM proposes a unique two-level adaptive modeling scheme by decoupling the dynamic kernel into a location sensitive importance map and a location invariant aggregation weight. The importance map is learned in a local temporal window to capture short-term information, while the aggregation weight is generated from a global view with a focus on long-term structure. TAM is a modular block and could be integrated into 2D CNNs to yield a powerful video architecture (TANet) with a very small extra computational cost. The extensive experiments on Kinetics-400 and Something-Something datasets demonstrate that our TAM outperforms other temporal modeling methods consistently, and achieves the state-of-the-art performance under the similar complexity. The code is available at url{ https://github.com/liu-zhy/temporal-adaptive-module}.
In this paper, the main task we aim to tackle is the multi-instance semi-supervised video object segmentation across a sequence of frames where only the first-frame box-level ground-truth is provided. Detection-based algorithms are widely adopted to handle this task, and the challenges lie in the selection of the matching method to predict the result as well as to decide whether to update the target template using the newly predicted result. The existing methods, however, make these selections in a rough and inflexible way, compromising their performance. To overcome this limitation, we propose a novel approach which utilizes reinforcement learning to make these two decisions at the same time. Specifically, the reinforcement learning agent learns to decide whether to update the target template according to the quality of the predicted result. The choice of the matching method will be determined at the same time, based on the action history of the reinforcement learning agent. Experiments show that our method is almost 10 times faster than the previous state-of-the-art method with even higher accuracy (region similarity of 69.1% on DAVIS 2017 dataset).
We introduce ReConvNet, a recurrent convolutional architecture for semi-supervised video object segmentation that is able to fast adapt its features to focus on any specific object of interest at inference time. Generalization to new objects never observed during training is known to be a hard task for supervised approaches that would need to be retrained. To tackle this problem, we propose a more efficient solution that learns spatio-temporal features self-adapting to the object of interest via conditional affine transformations. This approach is simple, can be trained end-to-end and does not necessarily require extra training steps at inference time. Our method shows competitive results on DAVIS2016 with respect to state-of-the art approaches that use online fine-tuning, and outperforms them on DAVIS2017. ReConvNet shows also promising results on the DAVIS-Challenge 2018 winning the $10$-th position.
We developed a real-time, high-quality semi-supervised video object segmentation algorithm. Its accuracy is on par with the most accurate, time-consuming online-learning model, while its speed is similar to the fastest template-matching method with sub-optimal accuracy. The core component of the model is a novel global context module that effectively summarizes and propagates information through the entire video. Compared to previous approaches that only use one frame or a few frames to guide the segmentation of the current frame, the global context module uses all past frames. Unlike the previous state-of-the-art space-time memory network that caches a memory at each spatio-temporal position, the global context module uses a fixed-size feature representation. Therefore, it uses constant memory regardless of the video length and costs substantially less memory and computation. With the novel module, our model achieves top performance on standard benchmarks at a real-time speed.