Do you want to publish a course? Click here

Linear-Quadratic Stochastic Differential Games on Random Directed Networks

107   0   0.0 ( 0 )
 Added by Jean-Pierre Fouque
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The study of linear-quadratic stochastic differential games on directed networks was initiated in Feng, Fouque & Ichiba cite{fengFouqueIchiba2020linearquadratic}. In that work, the game on a directed chain with finite or infinite players was defined as well as the game on a deterministic directed tree, and their Nash equilibria were computed. The current work continues the analysis by first developing a random directed chain structure by assuming the interaction between every two neighbors is random. We solve explicitly for an open-loop Nash equilibrium for the system and we find that the dynamics under equilibrium is an infinite-dimensional Gaussian process described by a Catalan Markov chain introduced in cite{fengFouqueIchiba2020linearquadratic}. The discussion about stochastic differential games is extended to a random two-sided directed chain and a random directed tree structure.



rate research

Read More

We study linear-quadratic stochastic differential games on directed chains inspired by the directed chain stochastic differential equations introduced by Detering, Fouque, and Ichiba. We solve explicitly for Nash equilibria with a finite number of players and we study more general finite-player games with a mixture of both directed chain interaction and mean field interaction. We investigate and compare the corresponding games in the limit when the number of players tends to infinity. The limit is characterized by Catalan functions and the dynamics under equilibrium is an infinite-dimensional Gaussian process described by a Catalan Markov chain, with or without the presence of mean field interaction.
251 - Jingrui Sun 2020
The paper studies the open-loop saddle point and the open-loop lower and upper values, as well as their relationship for two-person zero-sum stochastic linear-quadratic (LQ, for short) differential games with deterministic coefficients. It derives a necessary condition for the finiteness of the open-loop lower and upper values and a sufficient condition for the existence of an open-loop saddle point. It turns out that under the sufficient condition, a strongly regular solution to the associated Riccati equation uniquely exists, in terms of which a closed-loop representation is further established for the open-loop saddle point. Examples are presented to show that the finiteness of the open-loop lower and upper values does not ensure the existence of an open-loop saddle point in general. But for the classical deterministic LQ game, these two issues are equivalent and both imply the solvability of the Riccati equation, for which an explicit representation of the solution is obtained.
For a directed graph $G(V_n, E_n)$ on the vertices $V_n = {1,2, dots, n}$, we study the distribution of a Markov chain ${ {bf R}^{(k)}: k geq 0}$ on $mathbb{R}^n$ such that the $i$th component of ${bf R}^{(k)}$, denoted $R_i^{(k)}$, corresponds to the value of the process on vertex $i$ at time $k$. We focus on processes ${ {bf R}^{(k)}: k geq 0}$ where the value of $R_i^{(k+1)}$ depends only on the values ${ R_j^{(k)}: j to i}$ of its inbound neighbors, and possibly on vertex attributes. We then show that, provided $G(V_n, E_n)$ converges in the local weak sense to a marked Galton-Watson process, the dynamics of the process for a uniformly chosen vertex in $V_n$ can be coupled, for any fixed $k$, to a process ${ mathcal{R}_emptyset^{(r)}: 0 leq r leq k}$ constructed on the limiting marked Galton-Watson tree. Moreover, we derive sufficient conditions under which $mathcal{R}^{(k)}_emptyset$ converges, as $k to infty$, to a random variable $mathcal{R}^*$ that can be characterized in terms of the attracting endogenous solution to a branching distributional fixed-point equation. Our framework can also be applied to processes ${ {bf R}^{(k)}: k geq 0}$ whose only source of randomness comes from the realization of the graph $G(V_n, E_n)$.
99 - Ying Hu , Xun Li , Jiaqiang Wen 2019
In this paper, we study the solvability of anticipated backward stochastic differential equations (BSDEs, for short) with quadratic growth for one-dimensional case and multi-dimensional case. In these BSDEs, the generator, which is of quadratic growth in Z, involves not only the present information of solution (Y, Z) but also its future one. The existence and uniqueness of such BSDEs, under different conditions, are derived for several terminal situations, including small terminal value, bounded terminal value and unbounded terminal value.
123 - Shanjian Tang 2006
In this Note, assuming that the generator is uniform Lipschitz in the unknown variables, we relate the solution of a one dimensional backward stochastic differential equation with the value process of a stochastic differential game. Under a domination condition, a filtration-consistent evaluations is also related to a stochastic differential game. This relation comes out of a min-max representation for uniform Lipschitz functions as affine functions. The extension to reflected backward stochastic differential equations is also included.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا