Do you want to publish a course? Click here

Stochastic recursions on directed random graphs

188   0   0.0 ( 0 )
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

For a directed graph $G(V_n, E_n)$ on the vertices $V_n = {1,2, dots, n}$, we study the distribution of a Markov chain ${ {bf R}^{(k)}: k geq 0}$ on $mathbb{R}^n$ such that the $i$th component of ${bf R}^{(k)}$, denoted $R_i^{(k)}$, corresponds to the value of the process on vertex $i$ at time $k$. We focus on processes ${ {bf R}^{(k)}: k geq 0}$ where the value of $R_i^{(k+1)}$ depends only on the values ${ R_j^{(k)}: j to i}$ of its inbound neighbors, and possibly on vertex attributes. We then show that, provided $G(V_n, E_n)$ converges in the local weak sense to a marked Galton-Watson process, the dynamics of the process for a uniformly chosen vertex in $V_n$ can be coupled, for any fixed $k$, to a process ${ mathcal{R}_emptyset^{(r)}: 0 leq r leq k}$ constructed on the limiting marked Galton-Watson tree. Moreover, we derive sufficient conditions under which $mathcal{R}^{(k)}_emptyset$ converges, as $k to infty$, to a random variable $mathcal{R}^*$ that can be characterized in terms of the attracting endogenous solution to a branching distributional fixed-point equation. Our framework can also be applied to processes ${ {bf R}^{(k)}: k geq 0}$ whose only source of randomness comes from the realization of the graph $G(V_n, E_n)$.



rate research

Read More

The study of linear-quadratic stochastic differential games on directed networks was initiated in Feng, Fouque & Ichiba cite{fengFouqueIchiba2020linearquadratic}. In that work, the game on a directed chain with finite or infinite players was defined as well as the game on a deterministic directed tree, and their Nash equilibria were computed. The current work continues the analysis by first developing a random directed chain structure by assuming the interaction between every two neighbors is random. We solve explicitly for an open-loop Nash equilibrium for the system and we find that the dynamics under equilibrium is an infinite-dimensional Gaussian process described by a Catalan Markov chain introduced in cite{fengFouqueIchiba2020linearquadratic}. The discussion about stochastic differential games is extended to a random two-sided directed chain and a random directed tree structure.
We study the directed polymer model for general graphs (beyond $mathbb Z^d$) and random walks. We provide sufficient conditions for the existence or non-existence of a weak disorder phase, of an $L^2$ region, and of very strong disorder, in terms of properties of the graph and of the random walk. We study in some detail (biased) random walk on various trees including the Galton Watson trees, and provide a range of other examples that illustrate counter-examples to intuitive extensions of the $mathbb Z^d$/SRW result.
Many real-world networks are intrinsically directed. Such networks include activation of genes, hyperlinks on the internet, and the network of followers on Twitter among many others. The challenge, however, is to create a network model that has many of the properties of real-world networks such as powerlaw degree distributions and the small-world property. To meet these challenges, we introduce the textit{Directed} Random Geometric Graph (DRGG) model, which is an extension of the random geometric graph model. We prove that it is scale-free with respect to the indegree distribution, has binomial outdegree distribution, has a high clustering coefficient, has few edges and is likely small-world. These are some of the main features of aforementioned real world networks. We empirically observe that word association networks have many of the theoretical properties of the DRGG model.
The Maki-Thompson rumor model is defined by assuming that a population represented by a graph is subdivided into three classes of individuals; namely, ignorants, spreaders and stiflers. A spreader tells the rumor to any of its nearest ignorant neighbors at rate one. At the same rate, a spreader becomes a stifler after a contact with other nearest neighbor spreaders, or stiflers. In this work we study the model on random trees. As usual we define a critical parameter of the model as the critical value around which the rumor either becomes extinct almost-surely or survives with positive probability. We analyze the existence of phase-transition regarding the survival of the rumor, and we obtain estimates for the mean range of the rumor. The applicability of our results is illustrated with examples on random trees generated from some well-known discrete distributions.
We study linear-quadratic stochastic differential games on directed chains inspired by the directed chain stochastic differential equations introduced by Detering, Fouque, and Ichiba. We solve explicitly for Nash equilibria with a finite number of players and we study more general finite-player games with a mixture of both directed chain interaction and mean field interaction. We investigate and compare the corresponding games in the limit when the number of players tends to infinity. The limit is characterized by Catalan functions and the dynamics under equilibrium is an infinite-dimensional Gaussian process described by a Catalan Markov chain, with or without the presence of mean field interaction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا